Depression is a mental disorder that affects 300 million people of all ages worldwide, but fewer than half of those with the condition receive adequate treatment. In addition, the high pharmacological refractoriness (affecting 30%-50% of patients) and toxicity of some classical antidepressants support the pursuit of new therapies. People with this condition show depressed mood, loss of pleasure, high levels of oxidative stress, and accelerated biological aging (decreased telomere length and expression of the telomerase reverse transcriptase (TERT), the enzyme responsible for telomere maintenance). Because of the close relationship between depression and oxidative stress, nutraceuticals with antioxidant properties are excellent candidates for therapy. This study represents the first investigation of the possible antidepressant and antiaging effects of commercial samples of clarified açaí (Euterpe oleracea) juice (EO). This fruit is rich in antioxidants and widely consumed. In this study, mice were treated with saline or EO (10 μL/g, oral) for 4 days and then with saline or lipopolysaccharide (0.5 mg/kg, i.p.) to induce depressive-like behavior. Only four doses of EO were enough to abolish the despair-like and anhedonia behaviors and alterations observed in electromyographic measurements. The antidepression effect of EO was similar to that of imipramine and associated with antioxidant and antiaging effects (preventing lipid peroxidation and increasing TERT mRNA expression, respectively) in three major brain regions involved in depression (hippocampus, striatum, and prefrontal cortex). Additionally, EO significantly protected hippocampal cells, preventing neuronal loss associated with the depressive-like state and nitrite level increases (an indirect marker of nitric oxide production). Moreover, EO alone significantly increased TERT mRNA expression, revealing for the first time a potent antiaging action in the brain that suggests neuroprotection against long-term age-related consequences.
Depression is a chronic and recurrent disorder, associated with high morbidity and risk of suicide. Leptin was firstly described as an anti-obesity hormone, but several actions of leptin in CNS have been reported. In fact, leptin regulates dopaminergic neurotransmission in mesolimbic areas and has antidepressant-like properties in stress-based models. In the present study, we investigated, for the first time, putative antidepressant-like effects of leptin in an animal model of depressive-like behaviors induced by lipopolysaccharide (LPS), and the potential involvement of dopamine receptors as mediators of those behavioral effects. Mice were injected leptin (1.5 mg/kg, IP) or imipramine prior to LPS administration. To evaluate the involvement of dopamine receptors, different experimental groups were pretreated with either the dopaminergic antagonist SCH23390, for D1 receptors or raclopride, for D2/D3 receptors, prior to leptin injection. Twenty-four hours post-LPS, mice were submitted to the forced swimming and sucrose preference tests. In addition, IL-1β levels were determined in the prefrontal cortex (PFC), hippocampus and striatum. BDNF levels were measured in the hippocampus. Our results showed that leptin, similarly to imipramine, prevented the core behavioral alterations induced by LPS (despair-like behavior and anhedonia), without altering locomotion. In neurochemical analysis, leptin restored LPS-induced changes in IL-1β levels in the PFC and striatum, and increased BDNF levels in the hippocampus. The blockade of dopamine D1 and D2/D3 receptors inhibited leptin's antidepressant-like effects, whilst only the blockade of D1-like receptors blunted leptin-induced increments in prefrontal IL-1β levels. Our results indicate that leptin has antidepressant-like effects in an inflammatory model of depression with the contribution, at least partial, of dopamine receptors.
Oxidative imbalance, alterations in brain-derived neurotrophic factor (BDNF), and mitochondrial dysfunction are implicated in bipolar disorder (BD) pathophysiology and comorbidities, for example, cardiovascular conditions. Carvedilol (CVD), a nonselective beta-blocker widely used for the treatment of hypertension, presents antioxidant and mitochondrial stabilizing properties. Thus, we hypothesized that CVD would prevent and/or reverse mania-like behavioral and neurochemical alterations induced by lisdexamfetamine dimesylate (LDX). To do this, male Wistar rats were submitted to two different protocols, namely, prevention and reversal. In the prevention treatment the rats received daily oral administration (mg/kg) of CVD (2.5, 5 or 7.5), saline, valproate (VAL200), or the combination of CVD5 + VAL100 for 7 days. From the 8th to 14th day LDX was added. In the reversal protocol LDX was administered for 7 days with the drugs being added from the 8th to 14th day of treatment. Two hours after the last administration the behavioral (open field and social interaction) and neurochemical (reduced glutathione, lipid peroxidation, and BDNF) determinations were performed. The results showed that CVD prevented and reversed the behavioral and neurochemical alterations induced by LDX. The administration of CVD5 + VAL100 potentiated the effect of VAL200 alone. Taken together these results demonstrate a possible antimanic effect of CVD in this preclinical model.
Studies have suggested that the brain renin angiotensin system (RAS) regulates cerebral flow, autonomic and hormonal systems, stress, innate immune response and behavior, being implicated in several brain disorders such as major depression, Parkinson's and Alzheimer's disease. The angiotensin II receptor subtype 1 (AT1R) is distributed in brain regions responsible for the control of stress response through peripheral and central sympathetic hyperactivation as well as in the hypothalamic paraventricular region, areas known for the release of several neurotransmitters related to inflammatory response facilitation. This relationship leads to the assumption that AT1R might be the receptor most related to the central deleterious actions of angiotensin II. New evidences from clinical studies have shown a possible role for RAS in the pathogenesis of bipolar disorder (BD), a multifactorial disorder with acknowledged presence of neuronal damage via oxidative stress in brain areas such as hippocampus, prefrontal cortex and striatum. Given the studies highlighting AT1R activation as a central pro-inflammatory pathway and, conversely, the involvement of inflammatory response in the pathogenesis of BD; this paper hypothesizes the use of AT1R antagonists for BD management and prevention of its neuroprogression, due to their anti-inflammatory and neuroprotective effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.