It has been hypothesized that SMC protein complexes such as condensin and cohesin spatially organize chromosomes by extruding DNA into large loops. We directly visualized the formation and processive extension of DNA loops by yeast condensin in real time. Our findings constitute unambiguous evidence for loop extrusion. We observed that a single condensin complex is able to extrude tens of kilobase pairs of DNA at a force-dependent speed of up to 1500 base pairs per second, using the energy of adenosine triphosphate hydrolysis. Condensin-induced loop extrusion was strictly asymmetric, which demonstrates that condensin anchors onto DNA and reels it in from only one side. Active DNA loop extrusion by SMC complexes may provide the universal unifying principle for genome organization.
Contactin-associated protein-like 2 (CNTNAP2) is a large multidomain neuronal adhesion molecule implicated in a number of neurological disorders, including epilepsy, schizophrenia, autism spectrum disorder, intellectual disability, and language delay. We reveal here by electron microscopy that the architecture of CNTNAP2 is composed of a large, medium, and small lobe that flex with respect to each other. Using epitope labeling and fragments, we assign the F58C, L1, and L2 domains to the large lobe, the FBG and L3 domains to the middle lobe, and the L4 domain to the small lobe of the CNTNAP2 molecular envelope. Our data reveal that CNTNAP2 has a very different architecture compared with neurexin 1␣, a fellow member of the neurexin superfamily and a prototype, suggesting that CNTNAP2 uses a different strategy to integrate into the synaptic protein network. We show that the ectodomains of CNTNAP2 and contactin 2 (CNTN2) bind directly and specifically, with low nanomolar affinity. We show further that mutations in CNTNAP2 implicated in autism spectrum disorder are not segregated but are distributed over the whole ectodomain. The molecular shape and dimensions of CNTNAP2 place constraints on how CNTNAP2 integrates in the cleft of axo-glial and neuronal contact sites and how it functions as an organizing and adhesive molecule.
Proper mitochondrial genome inheritance is important for eukaryotic cell survival. Trypanosoma brucei, a protozoan parasite, contains a singular mitochondrial genome, the kDNA. The kDNA is anchored to the basal body via the tripartite attachment complex (TAC) to ensure proper segregation. Several components of the TAC have been described. However, the connection of the TAC to the kDNA remains elusive. Here, we characterize the TAC associated protein TAP110. Depletion as well as overexpression of TAP110 leads to a delay in the separation of the replicated kDNA networks. Proteome analysis after TAP110 overexpression identified several kDNA associated proteins including a TEX-like protein that dually localizes to the nucleus and the kDNA potentially linking replication/segregation in the two compartments. The assembly of TAP110 into the TAC region seems to require the TAC but not the kDNA itself, however once TAP110 has been assembled it also interacts with the kDNA. Finally, for the first time we use ultrastructure expansion microscopy in trypanosomes to reveal the precise position of TAP110 between TAC102 and the kDNA, showcasing the potential of this approach.
KeywordskDNA, mitochondrial genome segregation machinery, tripartite attachment complex (TAC), T AC A ssociated P rotein 110 , Trypanosoma brucei, ultrastructure expansion microscopy (U-ExM) Summary StatementTAP110 is a novel mitochondrial genome segregation factor in Trypanosoma brucei that associates with the previously described TAC component TAC102. Ultrastructure expansion microscopy reveals its proximal position to the kDNA. AbstractProper mitochondrial genome inheritance is key for eukaryotic cell survival, however little is known about the molecular mechanism controlling this process. Trypanosoma brucei, a protozoan parasite, contains a singular mitochondrial genome aka kinetoplast DNA (kDNA). kDNA segregation requires anchoring of the genome to the basal body via the tripartite attachment complex (TAC). Several components of the TAC as well as their assembly have been described, it however remains elusive how the TAC connects to the kDNA.Here, we characterize the TAC associated protein TAP110 and for the first time use ultrastructure expansion microscopy in trypanosomes to reveal that TAP110 is the currently most proximal kDNA segregation factor.The kDNA proximal positioning is also supported by RNAi depletion of TAC102, which leads to loss of TAP110 at the TAC. Overexpression of TAP110 leads to expression level changes of several mitochondrial proteins and a delay in the separation of the replicated kDNA networks. In contrast to other kDNA segregation factors TAP110 remains only partially attached to the flagellum after DNAse and detergent treatment and can only be solubilized in dyskinetoplastic cells, suggesting that interaction with the kDNA might be important for stability of the TAC association. Furthermore, we demonstrate that the TAC, but not the kDNA, is required for correct TAP110 localization in vivo and suggest that TAP110 might interact with other proteins to form a >669 kDa complex. Mitochondria are a defining feature of eukaryotic cells. They perform a large number of different functions ranging from catabolic reactions like oxidative phosphorylation [1] to anabolic processes like iron sulfur cluster assembly [2] and calcium homeostasis [3] . The vast majority of the mitochondrial proteins are encoded and expressed from the nuclear genome, while only a small set of proteins, mostly of the oxidative phosphorylation chain are encoded on the organelle's own genome. . In Trypanosoma brucei a parasitic protist the mitochondrial genome is organized in a complex structure named kinetoplast DNA (kDNA). It consists of about 25 large (23 kbp) circular DNA molecules [4] that encode 16 genes of the oxidative phosphorylation chain, two ribosomal proteins [5] and two ribosomal RNAs. Twelve of the mitochondrial genes require posttranscriptional modifications by RNA editing prior to translation on the mitochondrial ribosomes [6-9] . The guide RNAs involved in this process are encoded on minicircles (1 kbp) of which about 5000 are catenated into the kDNA network forming a disc like structure [10] . In that...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.