Apoptosis is an important process, both for normal development of the inner ear and for removal of oxidative-stress damaged sensory cells from the cochlea. Oxidative-stressors of auditory sensory cells include: loss of trophic factor support, ischemia-reperfusion, and ototoxins. Loss of trophic factor support and cisplatin ototoxicity, both initiate the intracellular production of reactive oxygen species and free radicals. The interaction of reactive oxygen species and free radicals with membrane phospholipids of auditory sensory cells creates aldehydic lipid peroxidation products. One of these aldehydes, 4-hydroxynonenal, functions as a mediator of apoptosis for both auditory neurons and hair cells. We present several approaches for the prevention of auditory sensory loss from reactive oxygen species-induced apoptosis: 1) preventing the formation of reactive oxygen species; (2) neutralizing the toxic products of membrane lipid peroxidation; and 3) blocking the damaged sensory cells' apoptotic pathway.
SummaryA small animal model that could be infected with human immunodeficiency virus 1 (HIV-1) after peripheral inoculation would greatly facilitate the study of the pathophysiology of acute HIV-1 infection. The utility of SCID mice implanted with human fetal thymus and liver (SCIDhu mice) for studying peripheral HIV-1 infizction in vivo has been hampered by the requirement for direct intraimplant injection of H1V-1 and the continued restriction of the resultant HIV-1 infection to the human thymus and liver (hu-thy/liv) implant. This may have been due to the very low numbers of human T cells present in the SCID-hu mouse peripheral lymphoid compartment. Since the degree of the peripheral reconstitution of SCID-hu mice with human T cells may be a function of the hu-thy/liv implant size, we increased the quantity of hu-thy/liv tissue implanted under the renal capsule and implanted bu-thy/liv tissue under the capsules of both kidneys. This resulted in SCID-hu mice in which significant numbers of human T cells were detected in the peripheral blood, spleens, and lymph nodes. After intraimplant injection of HIV-1 into these modified SCID-hu mice, significant HIV-1 infection was detected by quantitative coculture not only in the hu-tby/liv implant, but also in the spleen and peripheral blood. This indicated that HIV-1 infection can spread from the thymus to the peripheral lymphoid compartment. More importantly, a similar degree of infection of the hu-thy/liv implant and peripheral lymphoid compartment occurred after peripheral intraperitoneal inoculation with HIV-1. Active viral replication was indicated by the detection of HIV-1 gag DNA, HIV-1 gag RNA, and spliced tat/rev KNA in the hu-thy/liv implants, peripheral blood mononudear cells (PBMC), spleens, and lymph nodes of these HIV-l-infected SCID-hu mice. As a first step in using our modified SCID-hu mouse model to investigate the pathophysiological consequences of HIV-1 infection, the effect of HIV-1 infection on the expression of human cytokines shown to enhance HIV-1 replication was examined. Significantly more of the HIV-l-infected SCID-hu mice expressed mKNA for human tumor necrosis factors c~ and/5, and interleukin 2 in their spleens, lymph nodes, and PBMC than did uninfected SCID-hu mice. This suggested that HIV-1 infection in vivo can stimulate the expression of cytokine mP, NA by human T cells. Our modified SCID-hu mice may provide an improved model for studying the pathophysiology of HIV-1 infection in vivo and for investigating the effects of anti-HIV interventions on the prevention of disseminated HIV-1 infection.
Investigation of human hematopoietic maturation has been hampered by the lack of in vivo models.Although engraftment of irradiated C.B-17 scid/scid (SCID) mice with human progenitor cells occurred after infusion with human pediatric bone marrow cells, significant engraftment of the mouse bone marrow with human cells was dependent upon continuous treatment with exogenous human cytokines. Furthermore, despite cytokine treatment, only minimal peripheral engraftment of these mice with human cells was observed. In the present study, after infusion of irradiated SCID mice with pre-cultured human fetal bone marrow cells (BM-SCID-hu mice), their bone marrow became significanty engrafted with human precursor cells and their peripheral lymphoid compartment became populated with human B cells and monocytes independently of the administration of extraneous human cytokines. Examination of the bone marrow of the BM-SCID-hu mice for human cytokine mRNA gene expression demonstrated human leukemia inhibitory factor mRNA and interleukin 7 mRNA in nine of nine BM-SCID-hu mice and macrophage-colony-stimulating factor mRNA in seven of eight BM-SCID-hu mice. This was an intriguing observation because these cytokines regulate different stages of human hematopoiesis. Since engraftnent occurs in the absence of exogenous cytokine treatment, the BM-SCID-hu mouse model described should provide a useful in vivo system for studying factors important in the maturation of human myeloid and lymphoid cells in the bone marrow and the behavior of the mature human cells after dissemination into the peripheral lymphoid tissue. 8032The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.