COVID-19 is a systemic infection that exerts significant impact on the metabolism. Yet, there is little information on how SARS-CoV-2 affects metabolism. Using NMR spectroscopy, we measured the metabolomic and lipidomic serum profile from 263 (training cohort) + 135 (validation cohort) symptomatic patients hospitalized after positive PCR testing for SARS-CoV-2 infection. We also established the profiles of 280 persons collected before the coronavirus pandemic started. PCA analyses discriminated both cohorts, highlighting the impact that the infection has in overall metabolism. The lipidomic analysis unraveled a pathogenic redistribution of the lipoprotein particle size and composition to increase the atherosclerotic risk. In turn, metabolomic analysis reveals abnormally high levels of ketone bodies (acetoacetic acid, 3-hydroxybutyric acid and acetone) and 2-hydroxybutyric acid, a readout of hepatic glutathione synthesis and marker of oxidative stress. Our results are consistent with a model in which SARS-CoV-2 infection induces liver damage associated with dyslipidemia and oxidative stress.
In order to survive in highly saline environments, proteins from halophilic archea have evolved with biased amino acid compositions that have the capacity to reduce contacts with the solvent.
Protein N-glycosylation stands out for its intrinsic and functionally related heterogeneity. Despite its biomedical interest, Glycoprofile analysis still remains a major scientific challenge. Here, we present an NMR-based strategy to delineate the N-glycan composition in intact glycoproteins and under physiological conditions. The employed methodology allowed dissecting the glycan pattern of the IgE high-affinity receptor (FcεRIα) expressed in human HEK 293 cells, identifying the presence and relative abundance of specific glycan epitopes. Chemical shifts and differences in the signal line-broadening between the native and the unfolded states were integrated to build a structural model of FcεRIα that was able to identify intramolecular interactions between high-mannose N-glycans and the protein surface. In turn, complex type N-glycans reflect a large solvent accessibility, suggesting a functional role as interaction sites for receptors. The interaction between intact FcεRIα and the lectin hGal3, also studied here, confirms this hypothesis and opens new avenues for the detection of specific N-glycan epitopes and for the studies of glycoprotein–receptor interactions mediated by N-glycans.
COVID‐19 is a systemic infectious disease that may affect many organs, accompanied by a measurable metabolic dysregulation. The disease is also associated with significant mortality, particularly among the elderly, patients with comorbidities, and solid organ transplant recipients. Yet, the largest segment of the patient population is asymptomatic, and most other patients develop mild to moderate symptoms after SARS‐CoV‐2 infection. Here, we have used NMR metabolomics to characterize plasma samples from a cohort of the abovementioned group of COVID‐19 patients ( n = 69), between 3 and 10 months after diagnosis, and compared them with a set of reference samples from individuals never infected by the virus ( n = 71). Our results indicate that half of the patient population show abnormal metabolism including porphyrin levels and altered lipoprotein profiles six months after the infection, while the other half show little molecular record of the disease. Remarkably, most of these patients are asymptomatic or mild COVID‐19 patients, and we hypothesize that this is due to a metabolic reflection of the immune response stress.
Congenital erythropoietic porphyria is a rare autosomal recessive disease produced by deficient activity of uroporphyrinogen III synthase, the fourth enzyme in the heme biosynthetic pathway. The disease affects many organs, can be life-threatening, and currently lacks curative treatments. Inherited mutations most commonly reduce the enzyme's stability, altering its homeostasis and ultimately blunting intracellular heme production. This results in uroporphyrin by-product accumulation in the body, aggravating associated pathological symptoms such as skin photosensitivity and disfiguring phototoxic cutaneous lesions. We demonstrated that the synthetic marketed antifungal ciclopirox binds to the enzyme, stabilizing it. Ciclopirox targeted the enzyme at an allosteric site distant from the active center and did not affect the enzyme's catalytic role. The drug restored enzymatic activity in vitro and ex vivo and was able to alleviate most clinical symptoms of congenital erythropoietic porphyria in a genetic mouse model of the disease at subtoxic concentrations. Our findings establish a possible line of therapeutic intervention against congenital erythropoietic porphyria, which is potentially applicable to most of deleterious missense mutations causing this devastating disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.