The heterogeneity of exosomal populations has hindered our understanding
of their biogenesis, molecular composition, biodistribution, and functions. By
employing asymmetric-flow field-flow fractionation (AF4), we identified two
exosome subpopulations (large exosome vesicles, Exo-L, 90-120 nm; small exosome
vesicles, Exo-S, 60-80 nm) and discovered an abundant population of
non-membranous nanoparticles termed “exomeres” (~35 nm).
Exomere proteomic profiling revealed an enrichment in metabolic enzymes and
hypoxia, microtubule and coagulation proteins and specific pathways, such as
glycolysis and mTOR signaling. Exo-S and Exo-L contained proteins involved in
endosomal function and secretion pathways, and mitotic spindle and IL-2/STAT5
signaling pathways, respectively. Exo-S, Exo-L, and exomeres each had unique
N-glycosylation, protein, lipid, and DNA and RNA profiles
and biophysical properties. These three nanoparticle subsets demonstrated
diverse organ biodistribution patterns, suggesting distinct biological
functions. This study demonstrates that AF4 can serve as an improved analytical
tool for isolating and addressing the complexities of heterogeneous nanoparticle
subpopulations.
Tumour metastasis is the main cause of cancer related deaths. Metastasis is an intricate multi-step process that requires the acquisition of several cancer cell features, including the modulation of tumour cell migration, adhesion, invasion, and immune evasion. Changes in the cellular glycosylation are associated with malignant transformation of cancer cells, tumour progression and ultimately, metastasis formation. Glycans have major impact on cellular signalling and on the regulation of tumour cell-cell adhesion and cell-matrix interaction. Glycans drive the interplay between the cancer cells and the tumour microenvironment. In this review, we summarize the roles of glycan alterations in tumour progression, such as acquisition of oncogenic features due to modulation of receptor tyrosine kinases, proteoglycans, cadherins and integrins. We also highlight the importance of key glycan binding proteins such as selectins, siglecs and galectins, which are pivotal in the modulation of immune response. An overview on glycans as cancer biomarkers is also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.