Among sexually transmitted diseases, infection by human papillomavirus (HPV) has become one of the most important. On the other hand, though epidemiological data show that some HPV types are closely associated with cervical cancer, few reports have been found with reference to penile carcinoma because of its rare occurrence. The aim of this study was to investigate the relationship between HPV infection and penile cancer in Argentina. A retrospective study was carried out on 38 white men with penile squamous-cell carcinoma. Sixty-five archival fixed biopsies taken from 34 primary penile tumors, 25 nodal metastases, 1 skin "satellite" metastasis and 5 histologically normal lymph nodes were used as specimens. HPV detection and typing were carried out by the polymerase chain reaction (PCR) using generic primers, combined with single-stranded conformational polymorphism (SSCP) analysis. HPV DNA was found in 71% patients, corresponding 81% of them to "high risk" types, with predominance of HPV 18. Both primary tumors and metastases showed concordance of HPV occurrence and type in both lesions. In 3 patients, HPV 16 was detected not only in primary tumors and metastases, but also in histologically normal lymph nodes. Our data indicate that most penile carcinomas in Argentine patients are etiologically related to HPV, especially to "high risk" genital types. The agreement in HPV detection between primary tumors and metastases suggests a potential viral role in tumor progression. HPV detection in otherwise histologically normal lymph nodes might be useful as early marker of a metastatic process.
The new murine bladder model described resembles human bladder disease, making it a useful tool for studying the molecular mechanisms of tumor progression and metastasis, and assaying antimetastatic and anti-invasive agents.
Muscle-invasive forms of urothelial carcinomas are responsible for most mortality in bladder cancer. Finding new treatments for invasive bladder tumours requires adequate animal models to decipher the mechanisms of progression, in particular the way tumours interact with their microenvironment. Herein, using the murine bladder tumour cell line MB49 and its more aggressive variant MB49-I, we demonstrate that the adaptive immune system efficiently limits progression of MB49, whereas MB49-I has lost tumour antigens and is insensitive to adaptive immune responses. Furthermore, we unravel a parallel mechanism developed by MB49-I to subvert its environment: de novo secretion of the proteoglycan decorin. We show that decorin overexpression in the MB49/MB49-I model is required for efficient progression, by promoting angiogenesis and tumour cell invasiveness. Finally, we show that these results are relevant to muscle-invasive human bladder carcinomas, which overexpress decorin together with angiogenesis- and adhesion/migration-related genes, and that decorin overexpression in the human bladder carcinoma cell line TCCSUP is required for efficient invasiveness in vitro. We thus propose decorin as a new therapeutic target for these aggressive tumours.
Membrane Type 1 Matrix Metalloprotease (MT1-MMP) contributes to the invasive progression of breast cancers by degrading extracellular matrix tissues. Nucleoside diphosphate kinase, NME1/NM23-H1, has been identified as a metastasis suppressor; however, its contribution to local invasion in breast cancer is not known. Here, we report that NME1 is up-regulated in ductal carcinoma in situ (DCIS) as compared to normal breast epithelial tissues. NME1 levels drop in microinvasive and invasive components of breast tumor cells relative to synchronous DCIS foci. We find a strong anti-correlation between NME1 and plasma membrane MT1-MMP levels in the invasive components of breast tumors, particularly in aggressive histological grade III and triple-negative breast cancers. Knockout of NME1 accelerates the invasive transition of breast tumors in the intraductal xenograft model. At the mechanistic level, we find that MT1-MMP, NME1 and dynamin-2, a GTPase known to require GTP production by NME1 for its membrane fission activity in the endocytic pathway, interact in clathrin-coated vesicles at the plasma membrane. Loss of NME1 function increases MT1-MMP surface levels by inhibiting endocytic clearance. As a consequence, the ECM degradation and invasive potentials of breast cancer cells are enhanced. This study identifies the down-modulation of NME1 as a potent driver of the in situ-to invasive transition during breast cancer progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.