The microbial community dynamics of a functionally stable, well-mixed, methanogenic reactor fed with glucose were analyzed over a 605-day period. The reactor maintained constant pH and chemical oxygen demand removal during this period. Thirty-six rrn clones from each of seven sampling events were analyzed by amplified ribosomal DNA restriction analysis (ARDRA) for the Bacteria andArchaea domains and by sequence analysis of dominant members of the community. Operational taxonomic units (OTUs), distinguished as unique ARDRA patterns, showed reproducible distribution for three sample replicates. The highest diversity was observed in the Bacteria domain. The 16S ribosomal DNABacteria clone library contained 75 OTUs, with the dominant OTU accounting for 13% of the total clones, but just 21Archaea OTUs were found, and the most prominent OTU represented 50% of the clones from the respective library. Succession in methanogenic populations was observed, and two periods were distinguished: in the first, Methanobacterium formicicumwas dominant, and in the second, Methanosarcina mazei and aMethanobacterium bryantii-related organism were dominant. Higher variability in Bacteria populations was detected, and the temporal OTU distribution suggested a chaotic pattern. Although dominant OTUs were constantly replaced from one sampling point to the next, phylogenetic analysis indicated that inferred physiologic changes in the community were not as dramatic as were genetic changes. Seven of eight dominant OTUs during the first period clustered with the spirochete group, although a cyclic pattern of substitution occurred among members within this order. A more flexible community structure characterized the second period, since a sequential replacement of aEubacterium-related organism by an unrelated deep-branched organism and finally by a Propionibacterium-like species was observed. Metabolic differences among the dominant fermenters detected suggest that changes in carbon and electron flow occurred during the stable performance and indicate that an extremely dynamic community can maintain a stable ecosystem function.
Methanogenic bioreactor communities were used as model ecosystems to evaluate the relationship between functional stability and community structure. Replicated methanogenic bioreactor communities with two different community structures were established. The effect of a substrate loading shock on population dynamics in each microbial community was examined by using morphological analysis, small-subunit (SSU) rRNA oligonucleotide probes, amplified ribosomal DNA (rDNA) restriction analysis (ARDRA), and partial sequencing of SSU rDNA clones. One set of replicated communities, designated the high-spirochete (HS) set, was characterized by good replicability, a high proportion of spiral and short thin rod morphotypes, a dominance of spirochete-related SSU rDNA genes, and a high percentage of Methanosarcina-related SSU rRNA. The second set of communities, designated the low-spirochete (LS) set, was characterized by incomplete replicability, higher morphotype diversity dominated by cocci, a predominance of Streptococcus-related and deeply branching Spirochaetales-related SSU rDNA genes, and a high percentage of Methanosaeta-related SSU rRNA. In the HS communities, glucose perturbation caused a dramatic shift in the relative abundance of fermentative bacteria, with temporary displacement of spirochete-related ribotypes by Eubacterium-related ribotypes, followed by a return to the preperturbation community structure. The LS communities were less perturbed, with Streptococcus-related organisms remaining prevalent after the glucose shock, although changes in the relative abundance of minor members were detected by morphotype analysis. A companion paper demonstrates that the more stable LS communities were less functionally stable than the HS communities
Parallel processing is more stable than serial processing in many areas that employ interconnected activities. This hypothesis was tested for microbial community function using two quadruplicate sets of methanogenic communities, each set having substantially different populations. The two communities were maintained at a mean cell residence time of 16 days and a mean glucose loading rate of 0.34 g/liter-day in variable-volume reactors. To test stability to perturbation, they were subjected to an instantaneous glucose pulse that resulted in a 6.8-g/liter reactor concentration. The pattern of accumulated products in response to the perturbation was analyzed for various measures of functional stability, including resistance, resilience, and reactivity for each product. A new stability parameter, "moment of amplification envelope," was used to compare the soluble compound stability. These parameters indicated that the communities with predominantly parallel substrate processing were functionally more stable in response to the perturbation than the communities with predominantly serial substrate processing. The data also indicated that there was good replication of function under perturbed conditions; the degrees of replication were 0.79 and 0.83 for the two test communities.Parallel processing of complex interconnected activities has been proven to be a more efficient and robust approach in many systems, including information processing (5, 13), fluid flow (7), neurobiology (10), and communication (5). This phenomenon may also hold true for mixed microbial systems since functionally they are also equivalent to a network of metabolic activities of many interdependent populations. Methanogenic systems are good examples of networks in which a number of fermentative, syntrophic, and methanogenic populations work together as a community to convert organic substrates to methane via the well-recognized anaerobic food chain (Fig. 1a). If the above hypothesis is true, a substrate perturbation processed through multiple routes in parallel should result in a higher functional stability of the system because of the potential distribution of substrate to several populations or activities. Alternatively, if the same perturbation is processed through routes involving a smaller number of intermediate products in a serial manner, then the system should be less stable. The kinetic and thermodynamic constraints on each route may, in addition, modulate the outcome. Several issues emerge at the outset for testing such a hypothesis; these issues include establishment of the two systems, quantification of the functional stability, and replication of results. We address these issues as follows.Performance of the same overall function by different microbial communities under the referential state is perhaps ubiquitous. However, selecting two communities that perform the same overall function (viz., conversion of complex organic substrate to methane) via parallel and serial routes in both referential and perturbed states is extremely difficu...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.