JC virus (JCV) is ubiquitous in the human population, infecting children asymptomatically. After primary infection, JCV persists in the host throughout life and is often excreted in the urine. Two hundred thirty-four urine samples and 78 serum samples, collected from 171 healthy individuals and 63 patients infected with HIV, were used to characterize JCV infection in a Portuguese population. Using PCR, JCV DNA was detected in 38% of the urine samples. A significant difference in the excretion rate was observed between patients infected with HIV (51%) and healthy individuals (33%). The frequency of JCV viruria increased with age in healthy individuals, but not in patients infected with HIV. JCV urinary load was determined by real-time quantitative PCR and was independent of gender, age, HIV infection, and CD4+ cell count. Overall, the JCV genotype detected most commonly was 1B, followed by genotypes 2B and 4. The detection and quantitation of JCV-specific antibodies were performed in serum samples by an established enzyme immunoassay (EIA). Antibodies to JCV were observed in 91% of the patients tested, irrespective of HIV infection. A positive correlation between JCV urinary load and antibody titers was demonstrated. The present study provides the first characterization of seroprevalence and urinary excretion of JCV in a Portuguese population and revealed similar results to those observed in other European countries. A comparison between healthy individuals and patients infected with HIV, despite identical values of seroprevalence, showed some differences in the pattern of urinary excretion. J. Med. Virol. 82:494-504, 2010. (c) 2010 Wiley-Liss, Inc.
The search for alternative water sources is pushing to the reuse of treated water coming from municipal wastewater treatment plants. However, this requires that tightened standards be fulfilled. Among them is the microbiological safety of reused water. Although chlorination is the mostly applied disinfection system, it presents several disadvantages, such as the high doses required and the possibility of formation of dangerous by-products. Moreover, the threat of antibiotic resistance genes (ARGs) spread throughout poorly treated water is requiring the implementation of more efficient disinfection systems. Ozone and photo assisted disinfection technologies are being given special attention to reach treated water with higher quality. Still, much must be done to optimize the processes so that cost-effective systems may be obtained. This review paper gives a critical overview on the application of ozone and photo-based disinfection systems, bearing in mind their advantages and disadvantages when applied to water and municipal wastewater. Also, the possibility of integrated disinfection systems is considered.
The appearance and quick spread of the new severe acute respiratory syndrome coronavirus disease, COVID-19, brought major societal challenges. Importantly, suitable medical diagnosis procedures and smooth clinical management of the disease are an emergent need, which must be anchored on novel diagnostic methods and devices. Novel molecular diagnostic tools relying on nucleic acid amplification testing have emerged globally and are the current gold standard in COVID-19 diagnosis. However, the need for widespread testing methodologies for fast, effective testing in multiple epidemiological scenarios remains a crucial step in the fight against the COVID-19 pandemic. Biosensors have previously shown the potential for cost-effective and accessible diagnostics, finding applications in settings where conventional, laboratorial techniques may not be readily employed. Paper- and cellulose-based biosensors can be particularly relevant in pandemic times, for the renewability, possibility of mass production with sustainable methodologies, and safe environmental disposal. In this review, paper-based devices and platforms targeting SARS-CoV-2 are showcased and discussed, as a means to achieve quick and low-cost PoC diagnosis, including detection methodologies for viral genomic material, viral antigen detection, and serological antibody testing. Devices targeting inflammatory markers relevant for COVID-19 are also discussed, as fast, reliable bedside diagnostic tools for patient treatment and follow-up.
Water scarcity is one of the main problems of this century. Water reclamation appears as an alternative due to the reuse of treated wastewater. Therefore, effluents treatment technologies (activated sludge, rotary biological discs, percolating beds) must be improved since they are not able to remove emerging contaminants such as enteric pathogens (bacteria and virus). These pollutants are difficult to remove from the wastewater and lead to adverse consequences to human health. Advanced oxidation processes, such as single and catalytic ozonation, appear as suitable complements to conventional processes. Catalytic ozonation was carried out using a low-cost material, a volcanic rock. Single and catalytic ozonation were capable of promoting total Escherichia coli removal from municipal wastewater after 90 min of contact. The presence of volcanic rock increases disinfection efficiency since E. coli regrowth was not observed. The identified viruses (Norovirus genotype I and II and JC virus) were completely removed using catalytic ozonation, whereas single ozonation was not able to eliminate JC virus even after 150 min of treatment. The higher performance of the catalytic process can be explained by the formation of hydroxyl radicals, proving that disinfection occurs in the liquid bulk and not due to adsorption at the volcanic rock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.