In plants, the presence of thioredoxin (Trx), peroxiredoxin (Prx), and sulfiredoxin (Srx) has been reported as a component of a redox system involved in the control of dithiol-disulfide exchanges of target proteins, which modulate redox signalling during development and stress adaptation. Plant thiols, and specifically redox state and regulation of thiol groups of cysteinyl residues in proteins and transcription factors, are emerging as key components in the plant response to almost all stress conditions. They function in both redox sensing and signal transduction pathways. Scarce information exists on the transcriptional regulation of genes encoding Trx/Prx and on the transcriptional and post-transcriptional control exercised by these proteins on their putative targets. As another point of control, post-translational regulation of the proteins, such as S-nitrosylation and S-oxidation, is of increasing interest for its effect on protein structure and function. Special attention is given to the involvement of the Trx/Prx/Srx system and its redox state in plant signalling under stress, more specifically under abiotic stress conditions, as an important cue that influences plant yield and growth. This review focuses on the regulation of Trx and Prx through cysteine S-oxidation and/or S-nitrosylation, which affects their functionality. Some examples of redox regulation of transcription factors and Trx- and Prx-related genes are also presented.
Thioredoxins (Trxs), key components of cellular redox regulation, act by controlling the redox status of many target proteins, and have been shown to play an essential role in cell survival and growth. The presence of a Trx system in the nucleus has received little attention in plants, and the nuclear targets of plant Trxs have not been conclusively identified. Thus, very little is known about the function of Trxs in this cellular compartment. Previously, we studied the intracellular localization of PsTrxo1 and confirmed its presence in mitochondria and, interestingly, in the nucleus under standard growth conditions. In investigating the nuclear function of PsTrxo1 we identified proliferating cellular nuclear antigen (PCNA) as a PsTrxo1 target by means of affinity chromatography techniques using purified nuclei from pea leaves. Such protein–protein interaction was corroborated by dot-blot and bimolecular fluorescence complementation (BiFC) assays, which showed that both proteins interact in the nucleus. Moreover, PsTrxo1 showed disulfide reductase activity on previously oxidized recombinant PCNA protein. In parallel, we studied the effects of PsTrxo1 overexpression on Tobacco Bright Yellow-2 (TBY-2) cell cultures. Microscopy and flow-cytometry analysis showed that PsTrxo1 overexpression increases the rate of cell proliferation in the transformed lines, with a higher percentage of the S phase of the cell cycle at the beginning of the cell culture (days 1 and 3) and at the G2/M phase after longer times of culture (day 9), coinciding with an upregulation of PCNA protein. Furthermore, in PsTrxo1 overexpressed cells there is a decrease in the total cellular glutathione content but maintained nuclear GSH accumulation, especially at the end of the culture, which is accompanied by a higher mitotic index, unlike non-overexpressing cells. These results suggest that Trxo1 is involved in the cell cycle progression of TBY-2 cultures, possibly through its link with cellular PCNA and glutathione.
HighlightMitochondrial AtTrxo1 has a role in redox homeostasis during seed germination under salt conditions, and it could act as a possible sensor of saline stress and an inducer of H2O2 accumulation, independently of other ROS parameters
In a changing environment, plants are able to acclimate to new conditions by regulating their metabolism through the antioxidant and redox systems involved in the stress response. Here, we studied a mitochondrial thioredoxin in wild-type (WT) Arabidopis thaliana and two Attrxo1 mutant lines grown in the absence or presence of 100 mM NaCl. Compared to WT plants, no evident phenotype was observed in the mutant plants under control condition, although they had higher number of stomata, loss of water, nitric oxide and carbonyl protein contents as well as higher activity of superoxide dismutase (SOD) and catalase enzymes than WT plants. Under salinity, the mutants presented lower water loss and higher stomatal closure, H O and lipid peroxidation levels accompanied by higher enzymatic activity of catalase and the different SOD isoenzymes compared to WT plants. These inductions may collaborate in the maintenance of plant integrity and growth observed under saline conditions, possibly as a way to compensate the lack of TRXo1. We discuss the potential of TRXo1 to influence the development of the whole plant under saline conditions, which have great value for the agronomy of plants growing under unfavorable environment.
A decreased content of endogenous H2O2 may be responsible in part for the delayed cell death found in over-expressing cells, in which changes in oxidative parameters and antioxidants were less extended after the oxidative treatment. It is concluded that PsTrxo1 transformation protects TBY-2 cells from exogenous H2O2, thus increasing their viability via a process in which not only antioxidants but also Trxo1 seem to be involved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.