A growing body of evidence suggests that oxidative stress plays a key role in the pathogenesis of micro- and macrovascular diabetic complications. The increased oxidative stress in subjects with type 2 diabetes is a consequence of several abnormalities, including hyperglycemia, insulin resistance, hyperinsulinemia, and dyslipidemia, each of which contributes to mitochondrial superoxide overproduction in endothelial cells of large and small vessels as well as the myocardium. The unifying pathophysiological mechanism that underlies diabetic complications could be explained by increased production of reactive oxygen species (ROS) via: (1) the polyol pathway flux, (2) increased formation of advanced glycation end products (AGEs), (3) increased expression of the receptor for AGEs, (4) activation of protein kinase C isoforms, and (5) overactivity of the hexosamine pathway. Furthermore, the effects of oxidative stress in individuals with type 2 diabetes are compounded by the inactivation of two critical anti-atherosclerotic enzymes: endothelial nitric oxide synthase and prostacyclin synthase. Of interest, the results of clinical trials in patients with type 2 diabetes in whom intensive management of all the components of the metabolic syndrome (hyperglycemia, hypercholesterolemia, and essential hypertension) was attempted (with agents that exert a beneficial effect on serum glucose, serum lipid concentrations, and blood pressure, respectively) showed a decrease in adverse cardiovascular end points. The purpose of this review is (1) to examine the mechanisms that link oxidative stress to micro- and macrovascular complications in subjects with type 2 diabetes and (2) to consider the therapeutic opportunities that are presented by currently used therapeutic agents which possess antioxidant properties as well as new potential antioxidant substances.
Non-Alcoholic fatty liver disease (NAFLD) is characterized by accumulation of triglycerides (TG) in hepatocytes, which may also trigger cirrhosis. The mechanisms of NAFLD are not fully understood, but insulin resistance has been proposed as a key determinant.AimsTo determine the TG content and long chain fatty acyl CoA composition profile in liver from obese non-diabetic insulin resistant (IR) and lean insulin sensitive (IS) baboons in relation with hepatic and peripheral insulin sensitivity.MethodsTwenty baboons with varying grades of adiposity were studied. Hepatic (liver) and peripheral (mainly muscle) insulin sensitivity was measured with a euglycemic clamp and QUICKI. Liver biopsies were performed at baseline for TG content and LCFA profile by mass spectrometry, and histological analysis. Findings were correlated with clinical and biochemical markers of adiposity and insulin resistance.ResultsObese IR baboons had elevated liver TG content compared to IS. Furthermore, the concentration of unsaturated (LC-UFA) was greater than saturated (LC-SFA) fatty acyl CoA in the liver. Interestingly, LC-FA UFA and SFA correlated with waist, BMI, insulin, NEFA, TG, QUICKI, but not M/I. Histological findings of NAFLD ranging from focal to diffuse hepatic steatosis were found in obese IR baboons.ConclusionLiver TG content is closely related with both hepatic and peripheral IR, whereas liver LC-UFA and LC-SFA are closely related only with hepatic IR in non-human primates. Mechanisms leading to the accumulation of TG, LC-UFA and an altered UFA: LC-SFA ratio may play an important role in the pathophysiology of fatty liver disease in humans.
In this study, we aimed to evaluate the effects of exenatide (EXE) treatment on exocrine pancreas of nonhuman primates. To this end, 52 baboons (Papio hamadryas) underwent partial pancreatectomy, followed by continuous infusion of EXE or saline (SAL) for 14 weeks. Histological analysis, immunohistochemistry, Computer Assisted Stereology Toolbox morphometry, and immunofluorescence staining were performed at baseline and after treatment. The EXE treatment did not induce pancreatitis, parenchymal or periductal inflammatory cell accumulation, ductal hyperplasia, or dysplastic lesions/pancreatic intraepithelial neoplasia. At study end, Ki-67-positive (proliferating) acinar cell number did not change, compared with baseline, in either group. Ki-67-positive ductal cells increased after EXE treatment (P = 0.04). However, the change in Ki-67-positive ductal cell number did not differ significantly between the EXE and SAL groups (P = 0.13). M-30-positive (apoptotic) acinar and ductal cell number did not change after SAL or EXE treatment. No changes in ductal density and volume were observed after EXE or SAL. Interestingly, by triple-immunofluorescence staining, we detected c-kit (a marker of cell transdifferentiation) positive ductal cells co-expressing insulin in ducts only in the EXE group at study end, suggesting that EXE may promote the differentiation of ductal cells toward a β-cell phenotype. In conclusion, 14 weeks of EXE treatment did not exert any negative effect on exocrine pancreas, by inducing either pancreatic inflammation or hyperplasia/dysplasia in nonhuman primates.
We present a Hispanic male with the clinical and molecular diagnosis of Simpson-Golabi-Behmel syndrome (SGBS). The patient was born with multiple anomalies not entirely typical of SGBS patients, including penoscrotal hypospadias, a large prostatic utricle, and left coronal craniosynostosis. In addition, he demonstrated endocrine anomalies including a low random cortisol level suspicious for adrenal insufficiency and low testosterone level. To our knowledge, this is the first report of a prostatic utricle in SGBS and the second report of craniosynostosis. The unique disease-causing mutation likely arose de novo in the mother. It is a deletion-insertion that leads to a frameshift at the p.p. S359 [corrected] residue of GPC3 and a premature stop codon after five more amino acids. p. S359 [corrected] is the same residue that is normally cleaved by the Furin convertase, although the significance of this novel mutation with respect to the patient's multiple anomalies is unknown. We present this case as the perinatal course of a patient with unique features of SGBS and a confirmed molecular diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.