Chronic hyperglycemia impairs insulin action, resulting in glucotoxicity, which can be ameliorated in animal models by inducing glucosuria with renal glucose transport inhibitors. Here, we examined whether reduction of plasma glucose with a sodium-glucose cotransporter 2 (SGLT2) inhibitor could improve insulin-mediated tissue glucose disposal in patients with type 2 diabetes. Eighteen diabetic men were randomized to receive either dapagliflozin (n = 12) or placebo (n = 6) for 2 weeks. We measured insulin-mediated whole body glucose uptake and endogenous glucose production (EGP) at baseline and 2 weeks after treatment using the euglycemic hyperinsulinemic clamp technique. Dapagliflozin treatment induced glucosuria and markedly lowered fasting plasma glucose. Insulin-mediated tissue glucose disposal increased by approximately 18% after 2 weeks of dapagliflozin treatment, while placebo-treated subjects had no change in insulin sensitivity. Surprisingly, following dapagliflozin treatment, EGP increased substantially and was accompanied by an increase in fasting plasma glucagon concentration. Together, our data indicate that reduction of plasma glucose with an agent that works specifically on the kidney to induce glucosuria improves muscle insulin sensitivity. However, glucosuria induction following SGLT2 inhibition is associated with a paradoxical increase in EGP. These results provide support for the glucotoxicity hypothesis, which suggests that chronic hyperglycemia impairs insulin action in individuals with type 2 diabetes.
Diabetes mellitus is associated to an increased risk of cardiovascular diseases. Hyperglycemia is an important factor in cardiovascular damage, working through different mechanisms such as activation of protein kinase C, polyol and hexosamine pathways, advanced glycation end products production. All of these pathways, in association to hyperglycemia-induced mitochondrial dysfunction and endoplasmic reticulum stress, promote reactive oxygen species (ROS) accumulation that, in turn, promote cellular damage and contribute to the diabetic complications development and progression. ROS can directly damage lipids, proteins or DNA and modulate intracellular signaling pathways, such as mitogen activated protein kinases and redox sensitive transcription factors causing changes in protein expression and, therefore, irreversible oxidative modifications. Hyperglycemia-induced oxidative stress induces endothelial dysfunction that plays a central role in the pathogenesis of micro- and macro-vascular diseases. It may also increase pro-inflammatory and pro-coagulant factors expression, induce apoptosis and impair nitric oxide release. Oxidative stress induces several phenotypic alterations also in vascular smooth-muscle cell (VSMC). ROS is one of the factors that can promote both VSMC proliferation/migration in atherosclerotic lesions and VSMC apoptosis, which is potentially involved in atherosclerotic plaque instability and rupture. Currently, there are contrasting clinical evidences on the benefits of antioxidant therapies in the prevention/treatment of diabetic cardiovascular complications. Appropriate glycemic control, in which both hypoglycemic and hyperglycemic episodes are reduced, in association to the treatment of dyslipidemia, hypertension, kidney dysfunction and obesity, conditions which are also associated to ROS overproduction, can counteract oxidative stress and, therefore, both microvascular and macrovascular complications of diabetes mellitus.
A state of subclinical systemic inflammation is characteristically present in obesity/insulin resistance and type 2 diabetes mellitus (T2DM). The aim of the study was to develop an integrated measure of the circulating cytokines involved in the subclinical systemic inflammation and evaluate its relation with whole-body insulin sensitivity and glucose metabolism in T2DM. T2DM patients (n = 17, M/F 13/4, age = 55.0 ± 1.7 years, BMI = 33.5 ± 1.5 kg/m(2), HbA(1c) = 7.7 ± 0.3%) and normal glucose-tolerant (NGT) subjects (n = 15, M/F 7/8, age = 49.1 ± 2.5 years, BMI = 31.8 ± 1.2 kg/m(2), HbA(1c) = 5.6 ± 0.1%) were studied in a cross-sectional design. Whole-body insulin sensitivity was quantified by the euglycemic clamp. Beta-cell function [disposition index (DI)] was calculated using insulin and glucose values derived from an oral glucose tolerance test and the euglycemic clamp. Body fat mass was evaluated by dual-energy X-ray absorptiometry. Plasma cytokine [TNF-α, IL-6, MCP-1, osteopontin, fractalkine and adiponectin] values were divided into quintiles. A score ranging from 0 (lowest quintile) to 4 (highest quintile) was assigned. The inflammatory score (IS) was the sum of each cytokine score from which adiponectin score was subtracted in each study subject. Inflammatory cytokine levels were all higher in T2DM. IS was higher in T2DM as compared to NGT (10.0 ± 1.1 vs. 4.8 ± 0.8; p < 0.001). IS positively correlated with fasting plasma glucose (r = 0.638, p < 0.001), 1-h plasma glucose (r = 0.483, p = 0.005), 2-h plasma glucose (r = 0.611, p < 0.001) and HbA1c (r = 0.469, p = 0.007). IS was inversely correlated with insulin sensitivity (r = -0.478, p = 0.006) and DI (r = -0.523, p = 0.002). IS did not correlate with BMI and body fat mass. IS was an independent predictor of fasting plasma glucose and had a high sensibility and sensitivity to predict insulin resistance (M/I < 4). A state of subclinical inflammation defined and quantifiable by inflammatory score including TNF-α, IL-6, MCP-1, osteopontin, fractalkine and adiponectin is associated with both hyperglycemia and whole-body insulin resistance in T2DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.