Diabetes mellitus is associated to an increased risk of cardiovascular diseases. Hyperglycemia is an important factor in cardiovascular damage, working through different mechanisms such as activation of protein kinase C, polyol and hexosamine pathways, advanced glycation end products production. All of these pathways, in association to hyperglycemia-induced mitochondrial dysfunction and endoplasmic reticulum stress, promote reactive oxygen species (ROS) accumulation that, in turn, promote cellular damage and contribute to the diabetic complications development and progression. ROS can directly damage lipids, proteins or DNA and modulate intracellular signaling pathways, such as mitogen activated protein kinases and redox sensitive transcription factors causing changes in protein expression and, therefore, irreversible oxidative modifications. Hyperglycemia-induced oxidative stress induces endothelial dysfunction that plays a central role in the pathogenesis of micro- and macro-vascular diseases. It may also increase pro-inflammatory and pro-coagulant factors expression, induce apoptosis and impair nitric oxide release. Oxidative stress induces several phenotypic alterations also in vascular smooth-muscle cell (VSMC). ROS is one of the factors that can promote both VSMC proliferation/migration in atherosclerotic lesions and VSMC apoptosis, which is potentially involved in atherosclerotic plaque instability and rupture. Currently, there are contrasting clinical evidences on the benefits of antioxidant therapies in the prevention/treatment of diabetic cardiovascular complications. Appropriate glycemic control, in which both hypoglycemic and hyperglycemic episodes are reduced, in association to the treatment of dyslipidemia, hypertension, kidney dysfunction and obesity, conditions which are also associated to ROS overproduction, can counteract oxidative stress and, therefore, both microvascular and macrovascular complications of diabetes mellitus.
Chronic systemic exposure of D-galactose to mice, rats, and Drosophila causes the acceleration of senescence and has been used as an aging model. However, the underlying mechanism is as yet unclear. To investigate the mechanisms of neurodegeneration in this model, we studied cognitive function, hippocampal neuronal apoptosis and neurogenesis, and peripheral oxidative stress biomarkers and also the protective effects of the antioxidant R-alpha-lipoic acid. Chronic systemic exposure of mice to D-galactose (100 mg/kg, s.c., 7 weeks) induced a spatial memory deficit, an increase in cell karyopyknosis, apoptosis, and caspase-3 protein levels in hippocampal neurons, a decrease in the number of new neurons in the subgranular zone in the dentate gyrus, a reduction of migration of neural progenitor cells, and an increase in death of newly formed neurons in the granular cell layer. The D-galactose exposure also induced an increase in peripheral oxidative stress, including an increase in malondialdehyde and decreases in total antioxidative capabilities (T-AOC), total superoxide dismutase (T-SOD), and glutathione peroxidase (GSH-Px) activities. A concomitant treatment with lipoic acid ameliorated cognitive dysfunction and neurodegeneration in the hippocampus and also reduced peripheral oxidative damage by decreasing malondialdehyde and increasing T-AOC and T-SOD, without an effect on GSH-Px. These findings suggest that chronic D-galactose exposure induces neurodegeneration by enhancing caspase-mediated apoptosis and inhibiting neurogenesis and neuron migration, as well as increasing oxidative damage. In addition, D-galactose-induced toxicity in mice is a useful model for studying the mechanisms of neurodegeneration and neuroprotective drugs and agents.
A state of subclinical systemic inflammation is characteristically present in obesity/insulin resistance and type 2 diabetes mellitus (T2DM). The aim of the study was to develop an integrated measure of the circulating cytokines involved in the subclinical systemic inflammation and evaluate its relation with whole-body insulin sensitivity and glucose metabolism in T2DM. T2DM patients (n = 17, M/F 13/4, age = 55.0 ± 1.7 years, BMI = 33.5 ± 1.5 kg/m(2), HbA(1c) = 7.7 ± 0.3%) and normal glucose-tolerant (NGT) subjects (n = 15, M/F 7/8, age = 49.1 ± 2.5 years, BMI = 31.8 ± 1.2 kg/m(2), HbA(1c) = 5.6 ± 0.1%) were studied in a cross-sectional design. Whole-body insulin sensitivity was quantified by the euglycemic clamp. Beta-cell function [disposition index (DI)] was calculated using insulin and glucose values derived from an oral glucose tolerance test and the euglycemic clamp. Body fat mass was evaluated by dual-energy X-ray absorptiometry. Plasma cytokine [TNF-α, IL-6, MCP-1, osteopontin, fractalkine and adiponectin] values were divided into quintiles. A score ranging from 0 (lowest quintile) to 4 (highest quintile) was assigned. The inflammatory score (IS) was the sum of each cytokine score from which adiponectin score was subtracted in each study subject. Inflammatory cytokine levels were all higher in T2DM. IS was higher in T2DM as compared to NGT (10.0 ± 1.1 vs. 4.8 ± 0.8; p < 0.001). IS positively correlated with fasting plasma glucose (r = 0.638, p < 0.001), 1-h plasma glucose (r = 0.483, p = 0.005), 2-h plasma glucose (r = 0.611, p < 0.001) and HbA1c (r = 0.469, p = 0.007). IS was inversely correlated with insulin sensitivity (r = -0.478, p = 0.006) and DI (r = -0.523, p = 0.002). IS did not correlate with BMI and body fat mass. IS was an independent predictor of fasting plasma glucose and had a high sensibility and sensitivity to predict insulin resistance (M/I < 4). A state of subclinical inflammation defined and quantifiable by inflammatory score including TNF-α, IL-6, MCP-1, osteopontin, fractalkine and adiponectin is associated with both hyperglycemia and whole-body insulin resistance in T2DM.
D-galactose causes aging acceleration in different animal models but the mechanism is unclear. In the present study, we investigated the effects of D-galactose on lifespan and oxidative stress biomarkers in the fruit fly (Drosophila melanogaster) and housefly (Musca domestica). D-galactose was added to drinking water (20 mg/ml) for housefly and to culture medium (6.5%) for fruit fly from 24 h after emergence. Oxidative stress was estimated by measuring the activity of Cu-Zn-superoxide dismutase (SOD) and the levels of lipid peroxidation products, namely malondialdehyde (MDA) and lipofuscin in housefly brain (male) and in fruit fly (male and female). D-galactose caused a significant decrease in mean lifespan (by 12.6% of male and 15.9% of female) and maximum lifespan (by 12.9% of male and 17.1% of female) in fruit fly, and also a significant decrease in mean lifespan (by 27.1% of male, 19.8% of female) and maximum lifespan (by 27.1% of male, 21.9% of female) in housefly. MDA and lipofuscin increased with age in fruit fly and in housefly brains while change of the SOD activity showed a biphasic shape with age. D-galactose caused a significant increase in MDA and lipofuscin and decrease in SOD activity in the age-matched fruit flies and houseflies. These data indicate that D-galactose shortens the lifespan of the two different fly species and that the life shortening effect is associated with an increase in oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.