Identification of different chicken parts using portable equipment could provide useful information for the processing industry and also for authentication purposes. Traditionally, physical-chemical analysis could deal with this task, but some disadvantages arise such as time constraints and requirements of chemicals. Recently, near-infrared (NIR) spectroscopy and machine learning (ML) techniques have been widely used to obtain a rapid, noninvasive, and precise characterization of biological samples. This study aims at classifying chicken parts (breasts, thighs, and drumstick) using portable NIR equipment combined with ML algorithms. Physical and chemical attributes (pH and L*a*b* color features) and chemical composition (protein, fat, moisture, and ash) were determined for each sample. Spectral information was acquired using a portable NIR spectrophotometer within the range 900-1700 nm and principal component analysis was used as screening approach. Support vector machine and random forest algorithms were compared for chicken meat classification. Results confirmed the possibility of differentiating breast samples from thighs and drumstick with 98.8% accuracy. The results showed the potential of using a NIR portable spectrophotometer combined with a ML approach for differentiation of chicken parts in the processing industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.