One of the most widely researched topics in the food industry is bread quality analysis. Different techniques have been developed to assess the quality characteristics of bakery products. However, in the last few decades, the advancement in sensor and computational technologies has increased the use of computer vision to analyze food quality (e.g., bakery products). Despite a large number of publications on the application of imaging methods in the bakery industry, comprehensive reviews detailing the use of conventional analytical techniques and imaging methods for the quality analysis of baked goods are limited. Therefore, this review aims to critically analyze the conventional methods and explore the potential of imaging techniques for the quality assessment of baked products. This review provides an in-depth assessment of the different conventional techniques used for the quality analysis of baked goods which include methods to record the physical characteristics of bread and analyze its quality, sensory-based methods, nutritional-based methods, and the use of dough rheological data for end-product quality prediction. Furthermore, an overview of the image processing stages is presented herein. We also discuss, comprehensively, the applications of imaging techniques for assessing the quality of bread and other baked goods.These applications include studying and predicting baked goods' quality characteristics (color, texture, size, and shape) and classifying them based on these features. The limitations of both conventional techniques (e.g., destructive, laborious, error-prone, and expensive) and imaging methods (e.g., illumination, humidity, and noise) and the future direction of the use of imaging methods for quality analysis of bakery products are discussed.