Traditionally, companies have considered production planning and financial commitments separately. Production planning involves planning when to produce how much of a product, while the financial commitment considers which loans to take and how to repay them. In the current difficult financial environment with new challenges and with different opportunities, such as short‐term flexible loans for paying salaries, these related problems must be considered together. In this paper, we model the two processes (production and cash flows) in a single framework, using a mixed‐integer programming discrete‐time formulation. When taken individually, each of the problems has been thoroughly discussed in the literature, while the combined version that also incorporates labor financial costs and workforce sizing is more scarce. The main contribution of the paper involves new strategies for financing labor costs in strong agreement with the company's production plan and financial commitments. The new strategy relates credit ceiling with employment funding, using a sequence of flexible short‐term loans. We consider applications and propose mathematical programming based tools that can be used by companies’ managers for conducting their own solutions analysis, following their own findings and discussion of alternative scenarios.
A navegação consulta e descarregamento dos títulos inseridos nas Bibliotecas Digitais UC Digitalis, UC Pombalina e UC Impactum, pressupõem a aceitação plena e sem reservas dos Termos e Condições de Uso destas Bibliotecas Digitais, disponíveis em https://digitalis.uc.pt/pt-pt/termos. Conforme exposto nos referidos Termos e Condições de Uso, o descarregamento de títulos de acesso restrito requer uma licença válida de autorização devendo o utilizador aceder ao(s) documento(s) a partir de um endereço de IP da instituição detentora da supramencionada licença. Ao utilizador é apenas permitido o descarregamento para uso pessoal, pelo que o emprego do(s) título(s) descarregado(s) para outro fim, designadamente comercial, carece de autorização do respetivo autor ou editor da obra. Na medida em que todas as obras da UC Digitalis se encontram protegidas pelo Código do Direito de Autor e Direitos Conexos e demais legislação aplicável, toda a cópia, parcial ou total, deste documento, nos casos em que é legalmente admitida, deverá conter ou fazer-se acompanhar por este aviso. Da improficiência dos modelos de avaliação de activos: riscos emergentes ou incerteza sistemática?
Purpose This paper aims to analyze the heuristics and cognitive biases described by behavioral finance in the investment decision-making process of Portugal’s housing market. Design/methodology/approach In a first step, the authors applied an exploratory factor analysis (EFA) to assess the impact of heuristics and cognitive biases on investors’ decision-making. In a second step, the authors run a structural equation model (SEM) diagram path to assess if the sociodemographic characteristics of housing market investors determine the identified heuristics and if the heuristics condition the investors’ investment criteria. Findings Herd behavior and the heuristics of representativeness, availability and anchoring influence the housing market’s investors’ behavior in their decision-making process. Investors with above-average income show higher levels of overconfidence. Investors showing higher levels of overconfidence also tend to be more sensitive to the house price under analysis for investment. Women tend to show higher levels of the availability and anchoring heuristic. In turn, housing market investors showing higher levels of availability and anchoring heuristic tend to be more sensitive to the price and location of the house under analysis for investment. Research limitations/implications The explained variance of the EFA is below 50%, and the root mean square of approximation of the SEM is above the threshold of 0.05. These indicators are evidence of the models’ fragility. Practical implications Governments and regulators can better prevent real estate bubbles if they monitor behavioral biases and heuristics of housing investors together with quantitative indicators. Realtors can profit from adapting their marketing strategy and commercial communication to investors of sociodemographic groups more prone to a specific type of heuristics. Originality/value To the best of the authors’ knowledge, this is the first study that combines the contributions of behavioral finance with Portugal’s housing investment market and the first study connecting heuristics to investment criteria.
A navegação consulta e descarregamento dos títulos inseridos nas Bibliotecas Digitais UC Digitalis, UC Pombalina e UC Impactum, pressupõem a aceitação plena e sem reservas dos Termos e Condições de Uso destas Bibliotecas Digitais, disponíveis em https://digitalis.uc.pt/pt-pt/termos. Conforme exposto nos referidos Termos e Condições de Uso, o descarregamento de títulos de acesso restrito requer uma licença válida de autorização devendo o utilizador aceder ao(s) documento(s) a partir de um endereço de IP da instituição detentora da supramencionada licença. Ao utilizador é apenas permitido o descarregamento para uso pessoal, pelo que o emprego do(s) título(s) descarregado(s) para outro fim, designadamente comercial, carece de autorização do respetivo autor ou editor da obra. Na medida em que todas as obras da UC Digitalis se encontram protegidas pelo Código do Direito de Autor e Direitos Conexos e demais legislação aplicável, toda a cópia, parcial ou total, deste documento, nos casos em que é legalmente admitida, deverá conter ou fazer-se acompanhar por este aviso. Da diferenciação entre planos de pensões de benefício definido e planos de pensões de contribuição definida: mitos e realidades
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.