The strong confinement of semiconductor excitons in a quantum dot gives rise to atomlike behavior. The full benefit of such a structure is best observed in resonant excitation where the excited state can be deterministically populated and coherently manipulated. Because of the large refractive index and device geometry it remains challenging to observe resonantly excited emission that is free from laser scattering in III/V self-assembled quantum dots. Here we exploit the biexciton binding energy to create an extremely clean single photon source via two-photon resonant excitation of an InAs/GaAs quantum dot. We observe complete suppression of the excitation laser and multiphoton emissions. Additionally, we perform full coherent control of the ground-biexciton state qubit and observe an extended coherence time using an all-optical echo technique. The deterministic coherent photon pair creation makes this system suitable for the generation of time-bin entanglement and experiments on the interaction of photons from dissimilar sources.
We demonstrate a light-shot-noise-limited magnetometer based on the Faraday effect in a hot unpolarized ensemble of rubidium atoms. By using off-resonant, polarization-squeezed probe light, we improve the sensitivity of the magnetometer by 3.2 dB. The technique could improve the sensitivity of the most advanced magnetometers and quantum nondemolition measurements of atomic spin ensembles.
Long distance quantum communication is one of the prime goals in the field of quantum information science. With information encoded in the quantum state of photons, existing telecommunication fibre networks can be effectively used as a transport medium. To achieve this goal, a source of robust entangled single photon pairs is required. Here, we report the realization of a source of time-bin entangled photon pairs utilizing the biexciton-exciton cascade in a III/V self-assembled quantum dot. We analyse the generated photon pairs by an inherently phase-stable interferometry technique, facilitating uninterrupted long integration times. We confirm the entanglement by performing quantum state tomography of the emitted photons, which yields a fidelity of 0.69(3) and a concurrence of 0.41(6) for our realization of time-energy entanglement from a single quantum emitter.
/npsi/ctrl?action=rtdoc&an=21275596&lang=en http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc&an=21275596&lang=fr READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/jsp/nparc_cp.jsp?lang=en Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.
We introduce and experimentally explore the concept of the non-Gaussian depth of single-photon states with a positive Wigner function. The depth measures the robustness of a single-photon state against optical losses. The directly witnessed quantum non-Gaussianity withstands significant attenuation, exhibiting a depth of 18 dB, while the nonclassicality remains unchanged. Quantum non-Gaussian depth is an experimentally approachable quantity that is much more robust than the negativity of the Wigner function. Furthermore, we use it to reveal significant differences between otherwise strongly nonclassical single-photon sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.