Pseudomonas putida ATCC 17514 was used as a model strain to investigate the characteristics of bacterial growth in the presence of solid fluorene and phenanthrene. Despite the lower water-solubility of phenanthrene, P. putida degraded this polycyclic aromatic hydrocarbon (PAH) at a maximum observed rate of 1.4 +/- 0.1 mg L(-1) h(-1), higher than the apparent degradation rate of fluorene, 0.8 +/- 0.07 mg L(-1) h(-1). The role of physiological processes on the biodegradation of these PAHs was analyzed and two different uptake strategies were identified. Zeta potential measurements revealed that phenanthrene-grown cells were slightly more negatively charged (-57.5 +/- 4.7 mV) than fluorene-grown cells (-51.6 +/- 4.9 mV), but much more negatively charged than glucose-grown cells (-26.8 +/- 3.3 mV), suggesting that the PAH substrate induced modifications on the physical properties of bacterial surfaces. Furthermore, protein-to-exopolysaccharide ratios detected during bacterial growth on phenanthrene were typical of biofilms developed under physicochemical stress conditions, caused by the presence of sparingly water-soluble chemicals as the sole carbon and energy source for growth, the maximum value for TP/EPS during growth on phenanthrene (1.9) being lower than the one obtained with fluorene (5.5). Finally, confocal laser microscopy observations using a gfp-labeled derivative strain revealed that, in the presence of phenanthrene, P. putida::gfp cells formed a biofilm on accessible crystal surfaces, whereas in the presence of fluorene the strain grew randomly between the crystal clusters. The results showed that P. putida was able to overcome the lower aqueous solubility of phenanthrene by adhering to the solid PAH throughout the production of extracellular polymeric substances, thus promoting the availability and uptake of such a hydrophobic compound.
The present study is focused on the effect of synthetic surfactants, at low concentration, on the kinetics of polycyclic aromatic hydrocarbons (PAH) biodegradation by Pseudomonas putida ATCC 17514 and addresses the specific issue of the effect of the surfactant on bacterial adhesion to PAH, which is believed to be an important mechanism for the uptake of hydrophobic compounds. For that purpose, three surfactants were tested, namely, the nonionic Tween 20, the anionic sodium dodecyl sulphate (SDS) and the cationic surfactant cetyltrymethyl ammonium bromide (CTAB). Data showed that the effect of each surfactant on the ability of strain ATCC 17514 to biodegrade fluoranthene and anthracene and to use them as growth substrate varied considerably. Tween 20, at a concentration of 0.08 mM, increased the biodegradation rate of fluoranthene and doubled the maximum specific biodegradation rate of anthracene. The presence of SDS, at a concentration of 0.35 mM, led to a reduction of 50% on the biodegradation rate of fluoranthene, but doubled the removal rate of the more hydrophobic anthracene (0.3 mg L À1 h À1). Finally, CTAB, at a concentration of 0.27 mM, had a negative effect on the biodegradation of both PAH, leading to an abrupt decrease on the biomass growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.