Understanding interindividual variability in response to dietary polyphenols remains essential to elucidate their effects on cardiometabolic disease development. A meta-analysis of 128 randomized clinical trials was conducted to investigate the effects of berries and red grapes/wine as sources of anthocyanins and of nuts and pomegranate as sources of ellagitannins on a range of cardiometabolic risk biomarkers. The potential influence of various demographic and lifestyle factors on the variability in the response to these products were explored. Both anthocyanin- and ellagitannin-containing products reduced total-cholesterol with nuts and berries yielding more significant effects than pomegranate and grapes. Blood pressure was significantly reduced by the two main sources of anthocyanins, berries and red grapes/wine, whereas waist circumference, LDL-cholesterol, triglycerides, and glucose were most significantly lowered by the ellagitannin-products, particularly nuts. Additionally, we found an indication of a small increase in HDL-cholesterol most significant with nuts and, in flow-mediated dilation by nuts and berries. Most of these effects were detected in obese/overweight people but we found limited or non-evidence in normoweight individuals or of the influence of sex or smoking status. The effects of other factors, i.e., habitual diet, health status or country where the study was conducted, were inconsistent and require further investigation.
Several randomized controlled trials (RCTs) and meta-analyses support the benefits of flavanols on cardiometabolic health, but the factors affecting variability in the responses to these compounds have not been properly assessed. The objectives of this meta-analysis were to systematically collect the RCTs-based-evidence of the effects of flavanol-containing tea, cocoa and apple products on selected biomarkers of cardiometabolic risk and to explore the influence of various factors on the variability in the responses to the consumption of these products. A total of 120 RCTs were selected. Despite a high heterogeneity, the intake of the flavanol-containing products was associated using a random model with changes (reported as standardized difference in means (SDM)) in body mass index (−0.15, p < 0.001), waist circumference (−0.29, p < 0.001), total-cholesterol (−0.21, p < 0.001), LDL-cholesterol (−0.23, p < 0.001), and triacylglycerides (−0.11, p = 0.027), and with an increase of HDL-cholesterol (0.15, p = 0.005). Through subgroup analyses, we showed the influence of baseline-BMI, sex, source/form of administration, medication and country of investigation on some of the outcome measures and suggest that flavanols may be more effective in specific subgroups such as those with a BMI ≥ 25.0 kg/m2, non-medicated individuals or by specifically using tea products. This meta-analysis provides the first robust evidence of the effects induced by the consumption of flavanol-containing tea, cocoa and apple products on weight and lipid biomarkers and shows the influence of various factors that can affect their bioefficacy in humans. Of note, some of these effects are quantitatively comparable to those produced by drugs, life-style changes or other natural products. Further, RCTs in well-characterized populations are required to fully comprehend the factors affecting inter-individual responses to flavanol and thereby improve flavanols efficacy in the prevention of cardiometabolic disorders.
Background: Although widely used, there is limited understanding on the suitability of different dietary assessment tools to estimate (poly)phenol intake. This study aims to compare the agreement between a food...
Beer is a popular beverage and some beneficial effects have been attributed to its moderate consumption. We carried out a pilot study to test if beer and non-alcoholic beer consumption modify the levels of a panel of 53 cardiometabolic microRNAs in plasma and macrophages. Seven non-smoker men aged 30–65 with high cardiovascular risk were recruited for a non-randomised cross-over intervention consisting of the ingestion of 500 mL/day of beer or non-alcoholic beer for 14 days with a 7-day washout period between interventions. Plasma and urine isoxanthohumol were measured to assess compliance with interventions. Monocytes were isolated and differentiated into macrophages, and plasma and macrophage microRNAs were analysed by quantitative real-time PCR. Anthropometric, biochemistry and dietary parameters were also measured. We found an increase in plasma miR-155-5p, miR-328-3p, and miR-92a-3p after beer and a decrease after non-alcoholic beer consumption. Plasma miR-320a-3p levels decreased with both beers. Circulating miR-320a-3p levels correlated with LDL-cholesterol. We found that miR-17-5p, miR-20a-5p, miR-145-5p, miR-26b-5p, and miR-223-3p macrophage levels increased after beer and decreased after non-alcoholic beer consumption. Functional analyses suggested that modulated microRNAs were involved in catabolism, nutrient sensing, Toll-like receptors signalling and inflammation. We concluded that beer and non-alcoholic beer intake modulated differentially plasma and macrophage microRNAs. Specifically, microRNAs related to inflammation increased after beer consumption and decreased after non-alcoholic beer consumption.
(Poly)phenols (PPs) may have a therapeutic benefit in gastrointestinal (GI) disorders, such as irritable bowel syndrome (IBS) or inflammatory bowel disease (IBD). The aim of this review is to summarise the evidence-base in this regard. Observational evidence does not give a clear indication that PP intake has a preventative role for IBD or IBS, while interventional studies suggest these compounds may confer symptomatic and health-related quality of life improvements in known patients. There are inconsistent results for effects on markers of inflammation, but there are promising reports of endoscopic improvement. Work on the effects of PPs on intestinal permeability and oxidative stress is limited and therefore conclusions cannot be formed. Future work on the use of PPs in IBD and IBS will strengthen the understanding of clinical and mechanistic effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.