Fifty strains belonging to Vibrio harveyi, Vibrio campbellii, and the recently described Vibrio rotiferianus, were analysed using phenotypic and genomic techniques with the aim of analysing the usefulness of the different techniques for the identification of V. harveyi-related species. The species V. harveyi and V. campbellii were phenotypically indistinguishable by more than 100 phenotypic features. Thirty-nine experimental strains were phenotypically identified as V. harveyi, but FAFLP, REP-PCR, IGS-PCR and DNA-DNA hybridization proved that they in fact belong to the species V. campbellii. Similar groupings were found among all fingerprinting methodologies (except IGS-PCR). Thirty-two experimental strains clustered with the V. campbellii type and one reference strain; seven strains clustered with the V. harveyi type and three reference strains; and the type and four reference strains of V. rotiferianus grouped together. The correlations between DNA-DNA hybridization and the genomic fingerprinting by FAFLP and (GTG) 5 -PCR were found to be above 0?68 and statistically significant, suggesting the value of the latter techniques for the reliable identification of V. harveyi-related species. The results presented indicate that strains phenotypically identified as V. harveyi are in fact V. campbellii; these findings position V. campbellii as an important species involved in diseases of reared aquatic organisms.
Bivalve aquaculture is seriously affected by many bacterial pathogens that cause high losses in hatcheries as well as in natural beds. A number of Vibrio species, but also members of the genera Nocardia and Roseovarius, are considered important pathogens in aquaculture. The present work provides an updated overview of main diseases and implicated bacterial species affecting bivalves. This review focuses on aetiological agents, their diversity and virulence factors, the diagnostic methods available as well as information on the dynamics of the host-parasite relationship.
The effects of the oral administration of heat-inactivated Lactobacillus delbrüeckii ssp. lactis and Bacillus subtilis, individually or combined, on gilthead seabream immune responses were investigated both systemically and locally in the gut. In a first experiment, seabream (65 g) were fed for 3 weeks different diets supplemented with 1 x 10(7)CFU g(-1)Lactobacillus, 1 x 10(7)CFU g(-1)Bacillus, or 0.5 x 10(7)CFU g(-1)Lactobacillus plus 0.5 x 10(7)CFU g(-1)Bacillus. Controls were fed non-supplemented diet. Six fish per group were sampled at the end of the trial and some humoral and cellular systemic innate immune parameters were evaluated. Feeding the mixture of the two killed bacteria species significantly increased natural complement, serum peroxidase and phagocytic activities compared with controls. In a second experiment, juvenile seabream (13 g) were fed for 3 weeks the same experimental diets and total serum IgM and numbers of gut IgM(+) cells and acidophilic granulocytes were evaluated. All these parameters were significantly higher in the multispecies probiotic group compared to monospecies and control fed groups. The advantages provided by administration of killed probiotic bacteria as well as multispecies versus monospecies formulations are discussed in light of the results obtained and for their possible application in aquacultural practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.