Botrytis cinerea is one of the most important plant-pathogenic fungus. Products based on microorganisms can be used in biocontrol strategies alternative to chemical control, and mycoviruses have been explored as putative biological agents in such approaches. Here, we have explored the mycovirome of B. cinerea isolates from grapevine of Italy and Spain to increase the knowledge about mycoviral diversity and evolution, and to search for new widely distributed mycoviruses that could be active ingredients in biological products to control this hazardous fungus. A total of 248 B. cinerea field isolates were used for our metatranscriptomic study. Ninety-two mycoviruses were identified: 62 new mycoviral species constituting putative novel viral genera and families. Of these mycoviruses, 57 had a positive-sense single-stranded RNA (ssRNA) genome, 19 contained a double-stranded RNA (dsRNA) genome, 15 had a negative-sense ssRNA genome, and 1 contained a single-stranded DNA (ssDNA) genome. In general, ssRNA mycoviruses were widely distributed in all sampled regions, the ssDNA mycovirus was more frequently found in Spain, and dsRNA mycoviruses were scattered in some pools of both countries. Some of the identified mycoviruses belong to clades that have never been found associated with Botrytis species: Botrytis-infecting narnaviruses; alpha-like, umbra-like, and tymo-like ssRNA+ mycoviruses; trisegmented ssRNA− mycovirus; bisegmented and tetrasegmented dsRNA mycoviruses; and finally, an ssDNA mycovirus. Among the results obtained in this massive mycovirus screening, the discovery of novel bisegmented viruses, phylogenetically related to narnaviruses, is remarkable. IMPORTANCE The results obtained here have expanded our knowledge of mycoviral diversity, horizontal transfers, and putative cross-kingdom events. To date, this study presents the most extensive and wide diversity collection of mycoviruses infecting the necrotrophic fungus B. cinerea. The collection included all types of mycoviruses, with dsRNA, ssRNA+, ssRNA–, and ssDNA genomes, most of which were discovered here, and some of which were previously reported as infecting B. cinerea or other plant-pathogenic fungi. Some of these mycoviruses are reported for the first time here associated with B. cinerea, as a trisegmented ssRNA– mycovirus and as an ssDNA mycovirus, but even more remarkablly, we also describe here four novel bisegmented viruses (binarnaviruses) not previously described in nature. The present findings significantly contribute to general knowledge in virology and more particularly in the field of mycovirology.
Liberibacter is a bacterial group causing different diseases and disorders in plants. Among liberibacters, Candidatus Liberibacter solanaceraum (CLso) produces disorders in several species mainly within Apiaceae and Solanaceae families. CLso isolates are usually grouped in defined haplotypes according to single nucleotide polymorphisms in genes associated with ribosomal elements. In order to characterize more precisely isolates of CLso identified in potato in Spain, a Multilocus Sequence Analysis (MLSA) was applied. This methodology was validated by a complete analysis of ten housekeeping genes that showed an absence of positive selection and a nearly neutral mechanism for their evolution. Most of the analysis performed with single housekeeping genes, as well as MLSA, grouped together isolates of CLso detected in potato crops in Spain within the haplotype E, undistinguishable from those infecting carrots, parsnips or celery. Moreover, the information from these housekeeping genes was used to estimate the evolutionary divergence among the different CLso by using the concatenated sequences of the genes assayed. Data obtained on the divergence among CLso haplotypes support the hypothesis of evolutionary events connected with different hosts, in different geographic areas, and possibly associated with different vectors. Our results demonstrate the absence in Spain of CLso isolates molecularly classified as haplotypes A and B, traditionally considered causal agents of zebra chip in potato, as well as the uncertain possibility of the present haplotype to produce major disease outbreaks in potato that may depend on many factors that should be further evaluated in future works.
Botrytis virus F (BVF) is a positive-sense, single-stranded RNA (+ssRNA) virus within the Gammaflexiviridae family of the plant-pathogenic fungus Botrytis cinerea. In this study, the complete sequence of a BVF strain isolated from B. cinerea collected from grapevine fields in Spain was analyzed. This virus, in this work BVF-V448, has a genome of 6827 nt in length, excluding the poly(A) tail, with two open reading frames encoding an RNA dependent RNA polymerase (RdRP) and a coat protein (CP). The 5′- and 3′-terminal regions of the genome were determined by rapid amplification of cDNA ends (RACE). Furthermore, a yet undetected subgenomic RNA species in BVF-V448 was identified, indicating that the CP is expressed via 3′ coterminal subgenomic RNAs (sgRNAs). We also report the successful construction of the first BVF full-length cDNA clone and synthesized in vitro RNA transcripts using the T7 polymerase, which could efficiently transfect two different strains of B. cinerea, B05.10 and Pi258.9. The levels of growth in culture and virulence on plants of BVF-V448 transfected strains were comparable to BVF-free strains. The infectious clones generated in this work provide a useful tool for the future development of an efficient BVF foreign gene expression vector and a virus-induced gene silencing (VIGS) vector as a biological agent for the control of B. cinerea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.