In this study, novel active films made of poly(ε-caprolactone) (PCL) containing a solid dispersion of sage extract (SE) were developed by means of the electrospinning technique and subsequent annealing treatment. Initially, the antioxidant and antimicrobial potential of SE was confirmed. Thereafter, the effect of SE incorporation at different loading contents (5%, 10%, and 20%) on the physicochemical and functional properties of the films was evaluated. The films were characterized in terms of morphology, transparency, water contact angle, thermal stability, tensile properties, water vapor, and aroma barrier performances, as well as antioxidant and antimicrobial activities. Thin, hydrophobic films with good contact transparency were produced by annealing of the ultrathin electrospun fibers. Interestingly, the effect of SE addition on tensile properties and thermal stability of the films was negligible. In general, the water vapor and aroma permeability of the PCL-based films increased by adding SE to the polymer. Nevertheless, a strong 2,2-diphenyl-1-picrylhydrazyl (DPPH·) free radical scavenging ability, and a strong activity against foodborne pathogens Staphylococcus aureus and Escherichia coli were achieved by SE incorporation into PCL matrix. Overall, the obtained results suggest great potential of the here-developed PCL-based films containing SE in active food packaging applications with the role of preventing oxidation processes and microbial growth.
The study assessed the antimicrobial and antioxidant activities of commonly used and commercially available essential oils as an alternative to synthetic preservatives. The plant sources were as follows: lavender (Lavandula angustifolia), tea tree (Melaleuca alternifolia), bergamot (Citrus bergamia) and peppermint (Mentha piperita). The antioxidant activity of essential oils was tested by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2´-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) methods. The microdilution broth susceptibility assay revealed that lavender and bergamot essential oils were more efficient in inhibiting the bacterial growth than other tested oils, with the minimum inhibitory concentration of 5 μg/mL. This study also reports the successful implementation of an electrostatic extrusion technique for encapsulating essential oils into alginate beads, which enables the essential oils to maintain their free radical scavenging ability over time.
Anthocyanins are polyphenolic plant pigments associated with antioxidant and health-promoting properties. However, their application in the food industry is limited due to their poor stability. The purpose of this study was to encapsulate anthocyanin-rich bilberry (Vaccinium myrtillus L.) extract by freeze-drying and to investigate the effects of different wall materials and extract contents on the physicochemical and bioactive properties of the obtained encapsulates. Ethanolic bilberry extract was encapsulated with the use of maltodextrin (16.5–19.5 DE) (MD), gum Arabic (GA), and their combination in a 1:1 w/w ratio (MIX). Bilberry solids to wall material ratios were examined at 20:80, 30:70, and 40:60. All encapsulates showed an attractive red colour and low water activity values (aw ≤ 0.3) that indicated a low risk of microbial spoilage. In general, the biggest losses of total phenolic compounds and anthocyanins during three-week storage in the dark and at room temperature (20 ± 2 °C) were detected in the case of encapsulates with a higher content of bilberry extract (MIX30 and MIX40, and GA30 and GA40, respectively). The use of maltodextrin provided the best protection to bilberry anthocyanins during forced storage. Overall, the obtained encapsulates show suitable potential for the development of food products with added nutritional benefits.
In this study, in order to develop zein-based, edible, functional food-contact materials in different forms incorporating sage extract (10, 20, and 30%), solvent casting and electrospinning were employed. The study aimed to assess the effects of the applied techniques and the extract’s incorporation on the materials’ properties. The solvent casting generated continuous and compact films, where the extract’s incorporation provided more homogenous surfaces. The electrospinning resulted in non-woven mats composed of ribbon-like fibers in the range of 1.275–1.829 µm, while the extract’s incorporation provided thinner and branched fibers. The results indicated the compatibility between the materials’ constituents, and efficient and homogenous extract incorporation within the zein matrices, with more probable interactions occurring during the solvent casting. All of the formulations had a high dry matter content, whereas the mats and the formulations incorporating the extract had higher solubility and swelling in water. The films and mats presented similar DPPH• and ABTS•+ radical scavenging abilities, while the influence on Staphylococcus aureus and Salmonella enterica subsp. enterica serovar Typhimurium bacteria, and the growth inhibition, were complex. The antioxidant and antibacterial activity of the materials were more potent after the extract’s incorporation. Overall, the results highlight the potential of the developed edible materials for use as food-contact materials with active/bioactive functionality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.