To identify risk variants for colorectal cancer (CRC), we conducted a genome-wide association study, genotyping 550,163 tag SNPs in 940 individuals with familial colorectal tumor (627 CRC, 313 advanced adenomas) and 965 controls. We evaluated selected SNPs in three replication sample sets (7,473 cases, 5,984 controls) and identified three SNPs in SMAD7 (involved in TGF-beta and Wnt signaling) associated with CRC. Across the four sample sets, the association between rs4939827 and CRC was highly statistically significant (P(trend) = 1.0 x 10(-12)).
Genome-wide association (GWA) studies have identified multiple loci at which common variants modestly influence the risk of developing colorectal cancer (CRC). To enhance power to identify additional loci with similar effect sizes, we conducted a meta-analysis of two GWA studies, comprising 13,315 individuals genotyped for 38,710 common tagging SNPs. We undertook replication testing in up to eight independent case-control series comprising 27,418 subjects. We identified four previously unreported CRC risk loci at 14q22.2 (rs4444235, BMP4; P = 8.1 × 10 −10 ), 16q22.1 (rs9929218, CDH1; P = 1.2 × 10 −8 ), 19q13.1 (rs10411210, RHPN2; P = 4.6 × 10 −9 ) and 20p12.3 (rs961253; P = 2.0 × 10 −10 ). These findings underscore the value of large sample series for discovery and follow-up of genetic variants contributing to the etiology of CRC.Whereas inherited susceptibility is responsible for ~35% of all CRC 1 , high-risk germline mutations in APC, the mismatch repair (MMR) genes, MUTYH (MYH), SMAD4, BMPR1A and STK11/LKB1 account for <6% of all cases 2 . Recent GWA studies have validated the hypothesis that part of the heritable risk is caused by common, low-risk variants, identifying CRC susceptibility loci mapping to 8q24 (rs6983267) 3, 4, 8q23.3 (rs16892766, EIF3H)5, 10p14 (rs10795668)5, 11q23 (rs3802842)6, 15q13 (rs4779584)7 and 18q21 (rs4939827, SMAD7) 6,8 .GWA studies are not contingent on prior information concerning candidate genes or pathways, and thereby have the ability to identify important variants in hitherto unstudied genes. However, the effect sizes of individual variants, the need for stringent thresholds for establishing statistical significance, and financial constraints on numbers of variants that can be followed up inevitably constrain study power. We recently published two separate GWA studies for CRC. To augment the power to detect additional CRC risk loci, we have conducted a meta-analysis of data from these studies and followed up the best supported associations in large sample sets. This analysis, in conjunction with a replication study using eight independent case-control series, has enabled us to identify four new loci predisposing to CRC. This brings to ten the number of independent loci conclusively associated with CRC risk, and provides additional insight into the genetic architecture of inherited susceptibility to CRC. RESULTS Meta-analysis of genome-wide association scansThe GWA studies were both conducted by centers in London and Edinburgh, and were both based on designs involving two-phase strategies and using samples from UK populations NIH Public Access Author ManuscriptNat Genet. Author manuscript; available in PMC 2010 March 11. Published in final edited form as:Nat Genet. London phase 2 was based on genotyping 2,873 CRC cases and 2,871 controls ascertained through the National Study of Colorectal Cancer Genetics (NSCCG), whereas Edinburgh phase 2 was based on genotyping 2,057 cases and 2,111 controls. For phase 2, the London and Edinburgh samples were genotyped for a common s...
The unique DNA-binding properties of distinct NF-κB dimers are known to influence the selective regulation of NF-κB target genes. To gain a stronger appreciation for these dimer-specific differences, we have combined protein-binding microarrays (PBM) and surface plasmon resonance (SPR) to evaluate DNA sites recognized by eight different NF-κB dimers. We observed three distinct binding-specificity classes and provide insight into mechanisms by which dimers might regulate distinct sets of genes. We identified many new non-traditional κB site sequences and highlight an under-appreciated plasticity of NF-κB dimers in recognizing κB sites with a single consensus half-site. This study provides a database that will be of broad utility in efforts to identify NF-κB target sites and uncover gene regulatory circuitry.
WT1 mutations cause a wide spectrum of renal and extrarenal manifestations. Here we evaluated disease prevalence, phenotype spectrum, and genotype-phenotype correlations of 61 patients with WT1-related steroid-resistant nephrotic syndrome relative to 700 WT1-negative patients, all with steroid-resistant nephrotic syndrome. WT1 patients more frequently presented with chronic kidney disease and hypertension at diagnosis and exhibited more rapid disease progression. Focal segmental glomerulosclerosis was equally prevalent in both cohorts, but diffuse mesangial sclerosis was largely specific for WT1 disease and was present in 34% of cases. Sex reversal and/or urogenital abnormalities (52%), Wilms tumor (38%), and gonadoblastoma (5%) were almost exclusive to WT1 disease. Missense substitutions affecting DNA-binding residues were associated with diffuse mesangial sclerosis (74%), early steroid-resistant nephrotic syndrome onset, and rapid progression to ESRD. Truncating mutations conferred the highest Wilms tumor risk (78%) but typically late-onset steroid-resistant nephrotic syndrome. Intronic (KTS) mutations were most likely to present as isolated steroid-resistant nephrotic syndrome (37%) with a median onset at an age of 4.5 years, focal segmental glomerulosclerosis on biopsy, and slow progression (median ESRD age 13.6 years). Thus, there is a wide range of expressivity, solid genotype-phenotype associations, and a high risk and significance of extrarenal complications in WT1-associated nephropathy. We suggest that all children with steroid-resistant nephrotic syndrome undergo WT1 gene screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.