We investigated the effects of limiting (1.96 × 10(-9) mol l(-1) total Cu, corresponding to pCu 14.8; where pCu = -log [Cu(2+)]) and toxic Cu concentrations up to 8.0 × 10(-5) mol l(-1) total Cu (equivalent to pCu 9.5) on growth rates and photosynthetic activity of exponentially grown Phaeocystis cordata, using batch and semi-continuous cultures. With pulse amplitude modulated (PAM) fluorometry, we determined the photochemical response of P. cordata to the various Cu levels, and showed contrasting results for the batch and semi-continuous cultures. Although maximum photosystem II (PSII) quantum yield (Φ(M)) was optimal and constant in the semi-continuous P. cordata, the batch cultures showed a significant decrease in Φ(M) with culture age (0-72 h). The EC50 for the batch cultures was higher (2.0 × 10(-10) mol l(-1), pCu9.7), than that for the semi-continuous cultures (6.3 × 10(-11) mol l(-1), pCu10.2). The semi-continuous cultures exhibited a systematic and linear decrease in Φ(M) as Cu levels increased (for [Cu(2+)] < 1.0 × 10(-12) mol l(-1), pCu12.0), however, no effect of high Cu was observed on their operational PSII quantum yield (Φ'(M)). Similarly, semi-continuous cultures exhibited a significant decrease in Φ(M), but not in Φ'(M), because of low-Cu levels. Thus, Cu toxicity and Cu limitation damage the PSII reaction centers, but not the processes downstream of PSII. Quenching mechanisms (NPQ and Q (n)) were lower under high Cu relative to the controls, suggesting that toxic Cu impairs photo-protective mechanisms. PAM fluorometry is a sensitive tool for detecting minor physiological variations. However, culturing techniques (batch vs. semi-continuous) and sampling time might account for literature discrepancies on the effects of Cu on PSII. Semi-continuous culturing might be the most adequate technique to investigate Cu effects on PSII photochemistry.
The need for clean and low-cost algae production demands for investigations on algal physiological response under different growth conditions. In this research, we investigated the growth, biomass production and biochemical composition of Chlorella vulgaris using semi-continuous cultures employing three growth media (LC Oligo, Chu 10 and WC media). The highest cell density was obtained in LC Oligo, while the lowest in Chu medium. Chlorophyll a, carbohydrate and protein concentrations and yield were highest in Chu and LC Oligo media. Lipid class analysis showed that hydrocarbons (HC), sterol esthers (SE), free fatty acids (FFA), aliphatic alcohols (ALC), acetone mobile polar lipids (AMPL) and phospholipids (PL) concentrations and yields were highest in the Chu medium. Triglyceride (TAG) and sterol (ST) concentrations were highest in the LC Oligo medium. The results suggested that for cost effective cultivation, LC Oligo medium is the best choice among those studied, as it saved the cost of buying vitamins and EDTA associated with the other growth media, while at the same time resulted in the best growth performance and biomass production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.