Five microbial lipase preparations from several sources were immobilized by hydrophobic adsorption on small or large poly-hydroxybutyrate (PHB) beads and the effect of the support particle size on the biocatalyst activity was assessed in the hydrolysis of olive oil, esterification of butyric acid with butanol and transesterification of babassu oil (Orbignya sp.) with ethanol. The catalytic activity of the immobilized lipases in both olive oil hydrolysis and biodiesel synthesis was influenced by the particle size of PHB and lipase source. In the esterification reaction such influence was not observed. Geobacillus thermocatenulatus lipase (BTL2) was considered to be inadequate to catalyze biodiesel synthesis, but displayed high esterification activity. Butyl butyrate synthesis catalyzed by BTL2 immobilized on small PHB beads gave the highest yield (≈90 mmol L(-1)). In biodiesel synthesis, the catalytic activity of the immobilized lipases was significantly increased in comparison to the free lipases. Full conversion of babassu oil into ethyl esters was achieved at 72 h in the presence of Pseudozyma antarctica type B (CALB), Thermomyces lanuginosus lipase (Lipex(®) 100 L) immobilized on either small or large PHB beads and Pseudomonas fluorescens (PFL) immobilized on large PHB beads. The latter preparation presented the highest productivity (40.9 mg of ethyl esters mg(-1) immobilized protein h(-1)).
Blue nevi may rarely appear in multiple form and grouped in a circumscribed area, a pattern of arrangement that is more properly designed under the term agminated blue nevi. In this paper a new case with light and ultrastructural studies is described, and the previously reported cases are reviewed. Histologically, there was a characteristic perifollicular arrangement of dermal melanocytes, most of which showed ultrastructurally an extracellular sheath. Agminated blue nevi seem to be benign lesions, but because of their rarity, no definite prognosis can be given.
A novel variant of endemic pemphigus foliaceus (EPF) was described among individuals in an area surrounding El Bagre, Colombia, South America. The population in this rural mining community is exposed to high environmental levels of mercury, used for gold extraction, as well as other minerals, metalloids, and trace elements (e.g., quartz, rutile, granite, magnetite, and almenite) and ultraviolet radiation. Fifty control subjects and fifty EPF patients in the endemic area were examined for the presence of mercury in skin biopsies and hair, using autometallographic and mass spectroscopic analyses, respectively. Simultaneously, serum levels of IgE were measured, and cutaneous tests for hypersensitivity reactions were performed. Using autometallography, mercuric sulfides/selenides were detected in 14 of 51 skin biopsies distributed similarly in the control and patient groups. However, significantly higher serum IgE levels and mercury concentrations in hair, urine, and nails were found in patients compared with controls. Microscopic analysis revealed mercuric sulfides/selenides concentrated within and around the sweat gland epithelium, as well as in dendritic cells. Five skin biopsies from EPF patients and five from controls that tested positive for the presence of mercuric sulfides/selenides by autometallography were randomly selected for electron microscopic analysis. This analysis revealed a mixed electron-dense and electron-light material closely associated with desmosomes in patients. However, there were intracellular vesicles containing an amalgam of electron-dense and electron-light materials only in the EPF patients. Thus, EPF-affected individuals are exposed to high levels of environmental mercuric sulfides/selenides and other elements. This is the first study reporting mercuric sulfides/selenides in skin biopsies from people living in a focus of EPF, and these compounds may play a role in the pathogenesis of autoimmunity.
-High cell density cultivations of recombinant E. coli have been increasingly used for the production of heterologous proteins. However, it is a challenge to maintain these cultivations within the desired conditions, given that some variables such as dissolved oxygen concentration (DOC) and feed flow rate are difficult to control. This paper describes the software SUPERSYS_HCDC, a tool developed to supervise fed-batch cultures of rE. coli with biomass concentrations up to 150 g DCW /L and cell productivities up to 9 g DCW .L -1 .h -1 . The tool includes automatic control of the DOC by integrated action of the stirrer speed as well as of the air and oxygen flow rates; automatic start-up of the feed flow of fresh medium (system based on a neural network committee); and automatic slowdown of feeding when oxygen consumption exceeds the maximum capacity of the oxygen supply.
In spite of the large number of reports on fed-batch cultivation of E. coli, alternative cultivation/induction strategies remain to be more deeply exploited. Among these strategies, it could be mentioned the use of complex media with combination of different carbon sources, novel induction procedures and feed flow rate control matching the actual cell growth rate. Here, four different carbon source combinations (glucose, glycerol, glucose + glycerol and auto-induction) in batch media formulation were compared. A balanced combination of glucose and glycerol in a complex medium formulation led to: fast growth in the batch-phase; reduced plasmid instability by preventing early expression leakage; and protein volumetric productivity of 0.40 g.L-1.h-1. Alternative induction strategies were also investigated. A mixture of lactose and glycerol as supplementary medium fully induced a high biomass population, reaching a good balance between specific protein production (0.148 gprot.gDCW-1) and volumetric productivity (0.32 g.L-1.h-1). The auto-induction protocol showed excellent results on specific protein production (0.158 gprot.gDCW-1) in simple batch cultivations. An automated feed control based on the on-line estimated growth rate was implemented, which allowed cells to grow at higher rates than those generally used to avoid metabolic overflow, without leading to acetate accumulation. Some of the protocols described here may provide a useful alternative to standard cultivation and recombinant protein production processes, depending on the performance index that is expected to be optimized. The protocols using glycerol as carbon source and induction by lactose feeding, or glycerol plus glucose in batch medium and induction by lactose pulse led to rSpaA production in the range of 6 g.L-1, in short fed-batch processes (16 to 20 h) with low accumulation of undesired side metabolites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.