This paper presents a new prediction-based forwarding protocol for the complex and dynamic Delay Tolerant Networks (DTN). The proposed protocol is called GrAnt (Greedy Ant) as it uses a greedy transition rule for the Ant Colony Optimization (ACO) metaheuristic to select the most promising forwarder nodes or to provide the exploitation of good paths previously found. The main motivation for the use of ACO is to take advantage of its population-based search and of the rapid adaptation of its learning framework. Considering data from heuristic functions and pheromone concentration, the GrAnt protocol includes three modules: routing, scheduling, and buffer management. To the best of our knowledge, this is the first unicast protocol that employs a greedy ACO which: (1) infers best promising forwarders from nodes' social connectivity, (2) determines the best paths to be followed to a message reach its destination, while limiting the message replications and droppings, (3) performs message transmission scheduling and buffer space management. GrAnt is compared to Epidemic and PROPHET protocols in two different scenarios: a working day and a community mobility model. Simulation results obtained by ONE simulator show that in both environments, GrAnt achieves higher delivery ratio, lower messages redundancy, and fewer dropped messages than Epidemic and PROPHET.
This work proposes the Cultural Greedy Ant (CGrAnt) protocol to solve the problem of data delivery in opportunistic and intermittently connected networks referred to as Delay Tolerant Networks (DTNs). CGrAnt is a hybrid Swarm Intelligence-based forwarding protocol designed to address the dynamic and complex environment of DTNs. CGrAnt is based on: (1) Cultural Algorithms (CA) and Ant Colony Optimization (ACO) and (2) operational metrics that characterize the opportunistic social connectivity between wireless users. The most promising message forwarders are selected via a greedy transition rule based on local and global information captured from the DTN environment. Using simulations, we first analyze the influence of the ACO operators and CA knowledge on the CGrAnt performance. We then compare the performance of CGrAnt with the PROPHET and Epidemic protocols under varying networking parameters. The results show that CGrAnt achieves the highest delivery ratio (gains of 99.12% compared with PROPHET and 40.21% compared with Epidemic) and the lowest message replication (63.60% lower than PROPHET and 60.84% lower than Epidemic).
Resumo-Redes Oportunistas (OPNETs-Opportunistic Networks) são redes compostas por nós sem fio onde as oportunidades de comunicação são intermitentes devido a alta mobilidade dos nós. Portanto, um caminho fim-a-fim entre um nó origem e um nó destino pode não existir. Essas características de rede tornam o roteamento um dos grandes desafios em OPNETs, pois a probabilidade de entrega de cada mensagem depende de uma seleção apropriada de um ou mais nós candidato(s) a encaminhador(es) de mensagens. Esse artigo propõe um protocolo de roteamento para OPNETs chamado PSONET (PSO for Opportunistic Networks) que utiliza a técnica denominada de otimização por enxame de partículas (PSO do inglês Particle Swarm Optimization) para obter informações sobre a conectividade dos nós e direcionar o tráfego da rede através de um subconjunto de bons encaminhadores de mensagens. Os resultados mostram que o PSONET obtém ganhos em termos da taxa de entrega de mensagens e relação de redundância de mensagens se comparado com os protocolos Epidêmico e PROPHET. Palavras-Chave-Redes Oportunistas, Redes Tolerantes a Atraso, Enxame de Partículas. Abstract-Opportunistic Networks (OPNETs) are networks comprised of wireless nodes where the communication opportunities are intermittent due to high mobility of nodes. Therefore, an end-to-end path between source destination nodes may not exist. These features make the network routing a major challenge in OPNETs since the probability of delivery of each message depends on a proper selection of one or more message forwarders. This paper proposes a routing protocol for OPNETs called PSONET (PSO for Opportunistic Networks) which uses Particle Swarm Optimization (PSO) to gather information about node connectivity and direct network traffic through a subset of good message forwarders. Results show that the proposed protocol obtains significant gains in terms of message delivery rate and message redundancy when compared to Epidemic and PROPHET protocols.
LoRaWAN é um protocolo de acesso ao meio baseado na camada física LoRa (Long Range). Esta tecnologia utiliza Aloha puro, tamanho variável de pacote e espalhamento espectral adaptativo. O objetivo desse artigo é propor uma mudança no protocolo de acesso ao meio, substituindo o padrão Aloha por um CSMA (Carrier Sense Multiple Access) Adaptativo. O impacto dessa alteração é analisado em termos da taxa de entrega de mensagens, taxa de vazão da rede e eficiência energética. Com o CSMA Adaptativo, pode-se notar uma melhora na vazão da rede e na eficiência energética, tornando o protocolo mais confiável e capaz de suportar implementações que necessitem dessas características. Redes LoRa têm como uma das suas maiores preocupações uma grande autonomia de seus nós, assim uma melhora na eficiência energética, em termos de quantidade de bits enviados por Joule de energia, torna o método de acesso ao meio proposto ainda mais atrativo. Pode-se notar com as simulações realizadas que com uma grande ocupação da rede o CSMA Adaptativo obteve uma eficiência energética 173% maior que o CSMA e 62% maior que o Aloha.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.