Neuroptera, the group of lacewings, comprises only about 6000 species in the modern fauna, but is generally assumed to have been more diverse and important in the past. A major factor of the modern-day ecological diversity of the group, and supposedly in the past as well, is represented by the highly specialised larval forms of lacewings. Quantitative analyses of the morphology of larvae revealed a loss of morphological diversity in several lineages. Here we explored the diversity of the larvae of mantis lacewings (Mantispidae), lance lacewings (Osmylidae), beaded lacewings (Berothidae and Rhachiberothidae, the latter potentially an ingroup of Berothidae), and pleasing lacewings (Dilaridae), as well as fossil larvae, preserved in amber, resembling these. We used shape analysis of the head capsule and stylets (pair of conjoined jaws) as a basis due to the high availability of this body region in extant and fossil specimens and the ecological importance of this region. The analysis revealed a rather constant morphological diversity in Berothidae. Mantispidae appears to have lost certain forms of larvae, but has seen a drastic increase of larval diversity after the Cretaceous; this is in contrast to a significant decrease in diversity in adult forms.
Interactions between animals and plants represent an important driver of evolution. Especially the group Insecta has an enormous impact on plants, e.g., by consuming them. Among beetles, the larvae of different groups (Buprestidae, Cerambycidae, partly Eucnemidae) bore into wood and are therefore called wood-borer larvae or borers. While adults of these beetle groups are well known in the fossil record, there are barely any fossils of the corresponding larvae. We report here four new wood-borer larvae from Cretaceous Kachin amber (Myanmar, ca. 99 Ma). To compare these fossils with extant wood-borer larvae, we reconstructed the body outline and performed shape analysis via elliptic Fourier transformation and a subsequent principal component analysis. Two of the new larvae plot closely together and clearly in the same area as modern representatives of Buprestidae. As they furthermore lack legs, they are interpreted as representatives of Buprestidae. The other two new larvae possess legs and plot far apart from each other. They are more difficult to interpret; they may represent larvae of early offshoots of either Cerambycidae or Buprestidae, which still retain longer legs. These findings represent the earliest fossil record of larvae of Buprestidae and possibly of Cerambycidae known to date.
Lacewing larvae (Neuroptera) are known to be fierce predators which are morphologically highly specialised for a raptorial lifestyle. Mandibular-maxillary stylets are characteristic for all larvae of this group; these stylets can be extraordinarily massive. Despite these distinct sucking-piercing stylets, also other extreme features occur in some ingroups, such as an extremely elongated neck. In larvae of thread-winged lacewings (Crocinae) the neck can reach up to about one third of the body length; they are also called ‘long-necked antlions’. Even though the larvae of living neuropteran species show a variety of conspicuous morphologies today, indeed 100 million years ago, in the Cretaceous, Neuroptera seems to have had an even more “experimental phase”. Several larval specimens are known so far especially in Myanmar, Spanish and Lebanese amber from the Cretaceous with unique and unusual character combinations not found in any group living today. We describe here ten new fossil findings of one of these types of larvae with elongated head capsule in Myanmar amber, previously only known from a single specimen. We compared the head shapes of the new specimens with those of 190 specimens of other lacewing larvae and discuss further implications of our findings, especially making functional comparisons with long-necked antlions.
Among lacewings (Neuroptera), representatives of the groups Ascalaphidae (owlflies) and Myrmeleontidae (antlions) are likely the most widely known ones. The exact taxonomic status of the two groups remains currently unclear, each may in fact be nested in the other group. Herein, we refer to the group including representatives of both with the neutral term “owllion”. Owllion larvae are voracious ambush hunters. They are not only known in the extant fauna, but also from the fossil record. We report here new findings of a fossil owlfly larva from Eocene Baltic amber, as well as several owlfly-like larvae from Cretaceous Kachin amber, Myanmar. Based on these fossils, combined with numerous fossil and extant specimens from the literature, collections, and databases, we compared the morphological diversity of the head and mouthpart shapes of the larvae of owllions in the extant fauna with that of owllion-like larvae from three time slices: about 100 million years ago (Cretaceous), about 40 million years ago (Eocene), and about 20 million years ago (Miocene). The comparison reveals that the samples from the Eocene and Miocene are too small for a reliable evaluation. Yet, the Cretaceous larvae allow for some conclusions: (1) the larval morphological diversity of owllion larvae increased over time, indicating a post-Cretaceous diversification; (2) certain morphologies disappeared after the Cretaceous, most likely representing ecological roles that are no longer present nowadays. In comparison, other closely related lineages, e.g., silky lacewings or split-footed lacewings, underwent more drastic losses after the Cretaceous and no subsequent diversifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.