Psychopsidae (silky lacewings) is a species-poor ingroup of Neuroptera. Silky lacewings show a distinct relic distribution, indicating that the group was more speciesrich and diverse in the past. Silky lacewings have distinct larvae that resemble antlion larvae but differ from these in lacking teeth on their mouth parts, and in having a projecting labrum, which makes them "long-nosed antlion larvae". These larvae are well known from Myanmar amber (about 100 mya) and Baltic amber (mostly 34-38 mya, possibly 23-48 mya), as well as from the extant fauna. We report and figure numerous additional specimens from both amber types and from ca. 100 mya old French Charentese amber, expanding the known record of well-illustrated extant and fossil specimens from 26 to 52 specimens. We compare the diversity of head shape among these larvae through time by outline analysis. Results indicate that morphological diversity was pronouncedly higher in the Cretaceous, even after sample size correction. Eocene representatives are more diverse than modern representatives, but less diverse than Cretaceous ones, in one shape aspect that explains most of the overall variation (55.7%). Eocene representatives are less diverse in another shape aspect that explains the second-most variation (26.9%), but this might reflect a lack of first larval stage specimens. There seems to be no strong correlation between size and shape. This type of analysis enables a test for the loss of diversity over time, based on morphological diversity as a proxy, without the requirement of identifying fossil larvae down to a narrow taxonomical range.
Neuroptera, the group of lacewings, comprises only about 6000 species in the modern fauna, but is generally assumed to have been more diverse and important in the past. A major factor of the modern-day ecological diversity of the group, and supposedly in the past as well, is represented by the highly specialised larval forms of lacewings. Quantitative analyses of the morphology of larvae revealed a loss of morphological diversity in several lineages. Here we explored the diversity of the larvae of mantis lacewings (Mantispidae), lance lacewings (Osmylidae), beaded lacewings (Berothidae and Rhachiberothidae, the latter potentially an ingroup of Berothidae), and pleasing lacewings (Dilaridae), as well as fossil larvae, preserved in amber, resembling these. We used shape analysis of the head capsule and stylets (pair of conjoined jaws) as a basis due to the high availability of this body region in extant and fossil specimens and the ecological importance of this region. The analysis revealed a rather constant morphological diversity in Berothidae. Mantispidae appears to have lost certain forms of larvae, but has seen a drastic increase of larval diversity after the Cretaceous; this is in contrast to a significant decrease in diversity in adult forms.
Nymphidae, the group of split-footed lacewings, is a rather species-poor group. Split-footed lacewings nowadays are restricted to Australasia, while fossil forms are also known from other areas of the world, indicating that the group was more species-rich and therefore likely diverse in the past. Split-footed lacewings have rather distinct larvae, roughly resembling antlion larvae, but differing from the latter especially with regard to the mandibles. Antlion larvae usually have three prominent teeth on each mandible, while at least extant larvae of split-footed lacewings only have a single prominent tooth per mandible. Fossils interpreted as larvae of split-footed lacewings are well known from amber from Myanmar (ca. 100 myr; Burmese amber) and by a single specimen from Baltic amber (about 40 myr). We here report additional fossil specimens from Myanmar amber, expanding the known record of fossil forms from six depicted specimens to 15. For the extant fauna, we could compile 25 larvae. We compare the diversity of shape of extant and fossil larvae through time using an outline analysis (based on elliptic Fourier transformation) of the head. The results of this analysis indicate that the morphological diversity, or disparity, of split-footed lacewing larvae was higher in the past than it is today. With this type of analysis, we can show a loss of diversity over time, without the necessity to identify the fossil larvae down to a narrow taxonomical range. A similar pattern has already been recognised in silky lacewings, Psychopsidae. This might indicate a general loss of diversity of lacewing larvae.
BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.