Evidence of molecular and functional homology between vertebrate and Drosophila glia is limited, restricting the power of Drosophila as a model system to unravel the molecular basis of glial function. Like in vertebrates, in the Drosophila central nervous system glial cells are produced in excess and surplus glia are eliminated by apoptosis adjusting final glial number to axons. The underlying molecular mechanisms are largely unknown, as the only gliatrophic pathway known to date in flies is the EGFR and its ligands. The PDGFR signaling pathway plays a major role in regulating oligodendrocyte migration and number in vertebrates. Here, we show that the Drosophila PDGFR/VEGFR homologue PVR is required in midline glia during axon guidance for glial survival and migration, ultimately enabling axonal enwrapment. The midline glia migrate aided by the VUM and the MP1 midline neurons--sources of PVF ligands--and concomitantly interactions with neurons maintain midline glia survival. Upon loss of function for PVF/PVR signaling midline glia apoptosis increases, and gain of function induces supernumerary midline glia. Midline glial cells are displaced towards ectopic sources of PVF ligands. PVR signaling promotes midline glia survival through AKT and ERK pathways. This work shows that the PVR/PDGFR pathway plays conserved gliatrophic and gliatropic roles in subsets of glial cells in flies and vertebrates.
Development, cancer, neurodegenerative and demyelinating diseases, injury, and stem cell manipulations are characterised by alterations in cell number. Research into development, disease, and the effects of drugs require cell number counts. These are generally indirect estimates, because counting cells in an animal or organ is paradoxically difficult, as well as being tedious and unmanageable. Drosophila is a powerful model organism used to investigate the genetic bases of development and disease. There are Drosophila models for multiple neurodegenerative diseases, characterised by an increase in cell death. However, a fast, reliable, and accurate way to count the number of dying cells in vivo is not available. Here, we present a method based on image filtering and mathematical morphology techniques, to count automatically the number of dying cells in intact fruit-fly embryos. We call the resulting programme DeadEasy Caspase. It has been validated for Drosophila and we present examples of its power to address biological questions. Quantification is automatic, accurate, objective, and very fast. DeadEasy Caspase will be freely available as an ImageJ plug-in, and it can be modified for use in other sample types. It is of interest to the Drosophila and wider biomedical communities. DeadEasy Caspase is a powerful tool for the analysis of cell survival and cell death in development and in disease, such as neurodegenerative diseases and ageing. Combined with the power of Drosophila genetics, DeadEasy expands the tools that enable the use of Drosophila to analyse gene function, model disease and test drugs in the intact nervous system and whole animal.
Axons navigate step-wise, from one intermediate target to the next, until they reach their final destination target. In the central nervous system, intermediate targets are often glial cells, and final targeting is also aided by glia. In the peripheral nervous system, however, glial cells most often follow axons, which therefore navigate following other, nonglial clues. Even in the central nervous system, interactions between axons and glia are dynamic and reciprocal, as the neurons regulate migration, survival and proliferation of the glia cells they need for guidance. We review here the experimental evidence investigating roles of glia in axon guidance. Some molecules are known to influence either the neurons or the glia, but the molecular mechanisms underlying axon-glia interactions during pathfinding are only beginning to emerge.
Trophic interactions in the vertebrate nervous system enable the adjustment of cell number and axon guidance, targeting and connectivity. Computational analysis of the sequenced Drosophila genome failed to identify some of the main trophic factors, the neuregulins and neurotrophins, as well as many other genes. This provoked speculations that the Drosophila nervous system might not require such regulative interactions. Here we review abundant cellular, genetic and functional data that demonstrate the existence of both neurotrophic and gliatrophic interactions in the Drosophila nervous system. Glial survival is maintained by the epidermal growth factor receptor (EGFR) signaling pathway in response to the ligands Spitz, a transforming growth factor-α (TGF-α) signaling molecule, and Vein, a neuregulin homologue. Cellular and genetic evidence predicts the existence of neuronal trophic factors operating at least in the Drosophila embryo during axon guidance and, in the visual system, during the targeting of retinal axons in the brain.
Cell number changes during normal development, and in disease (e.g., neurodegeneration, cancer). Many genes affect cell number, thus functional genetic analysis frequently requires analysis of cell number alterations upon loss of function mutations or in gain of function experiments. Drosophila is a most powerful model organism to investigate the function of genes involved in development or disease in vivo. Image processing and pattern recognition techniques can be used to extract information from microscopy images to quantify automatically distinct cellular features, but these methods are still not very extended in this model organism. Thus cellular quantification is often carried out manually, which is laborious, tedious, error prone or humanly unfeasible. Here, we present DeadEasy Mito-Glia, an image processing method to count automatically the number of mitotic cells labelled with anti-phospho-histone H3 and of glial cells labelled with anti-Repo in Drosophila embryos. This programme belongs to the DeadEasy suite of which we have previously developed versions to count apoptotic cells and neuronal nuclei. Having separate programmes is paramount for accuracy. DeadEasy Mito-Glia is very easy to use, fast, objective and very accurate when counting dividing cells and glial cells labelled with a nuclear marker. Although this method has been validated for Drosophila embryos, we provide an interactive window for biologists to easily extend its application to other nuclear markers and other sample types. DeadEasy MitoGlia is freely available as an ImageJ plug-in, it increases the repertoire of tools for in vivo genetic analysis, and it will be of interest to a broad community of developmental, cancer and neuro-biologists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.