With recent advances of additive manufacturing (AM) technology, direct ink write (DIW) printing has allowed to incorporate multi-material printing of various materials with freedom of design and complex geometric shapes to complete functional sensors in a one-step fabrication. This paper introduces the use of DIW 3D printing of polydimethylsiloxane (PDMS) with barium titanate (BTO) filler as stretchable composites with tunable piezoelectric properties that can be used for force sensors applications. To improve the bonding between stretchable piezoelectric composites and electrodes, multi-walled carbon nanotubes (MWCNT) was included in the fabrication of electrodes at a fixed ratio of 11 wt. %. The alignment of the BTO dipoles was achieved through corona poling method, which applies an electric charge on the surface layer of the functional material, aligning the dipoles in the desired direction and thus gaining the piezoelectricity. Different BTO mixing ratios (10-50 wt. %) were evaluated in order to obtain tunable piezoelectric properties and compare the sensitivity with respect their elastic properties. Tensile testing and piezoelectric testing were carried out to characterize mechanical and piezoelectric properties. Results showed that fabricated PDMS with 50 wt. % BTO gave the highest piezoelectric coefficient (d33) of 11.5 pC/N and with an output voltage of 385 mV under compression loading of >200 lbF. This demonstrates feasibility of using multi-material DIW printing to fabricate piezoelectric force sensors with integrated electrodes in one-step without compromising the flexibility of the material.
The orthotropic functional properties of additively manufactured ceramics due to the fabrication process was characterized in this study. Spherical, environmentally benign barium titanate (BaTiO 3 ) powders were fabricated using binder jetting 3D printing. Dielectric and piezoelectric properties of these ceramics were characterized as a function of the printing orientation. The dielectric constant of the samples tested normal to the printing layers was observed to be 20% higher than those tested in the parallel fashion. Similarly, the piezoelectric response was found to be over 35% in the normal orientation. With these results, it was shown that the electroding orientation has a direct influence on the functional properties of additively manufactured ceramics. Overall, with less than 37% of the theoretical density, the average piezoelectric coefficient for the perpendicularly tested ceramics was found to be 152.7 pC N −1 , which is 80% of the theoretical value. The high piezoelectric response obtained with such low densities can lead to the development of more mass efficient, and cost-effective sensing and energy harvesting devices, as well as structures that can be tuned to respond based on the direction of the loads applied.
The growing demand for wearable devices, soft robotics, and tissue engineering in recent years has led to an increased effort in the field of soft materials. With the advent of personalized devices, the one-shape-fits-all manufacturing methods may soon no longer be the standard for the rapidly increasing market of soft devices. Recent findings have pushed technology and materials in the area of additive manufacturing (AM) as an alternative fabrication method for soft functional devices, taking geometrical designs and functionality to greater heights. For this reason, this review aims to highlights recent development and advances in AM processable soft materials with self-healing, shape memory, electronic, chromic or any combination of these functional properties. Furthermore, the influence of AM on the mechanical and physical properties on the functionality of these materials is expanded upon. Additionally, advances in soft devices in the fields of soft robotics, biomaterials, sensors, energy harvesters, and optoelectronics are discussed. Lastly, current challenges in AM for soft functional materials and future trends are discussed.
Recent studies have highlighted the effects of various stimuli on the chemical reduction of graphene oxide (GO) through green reductant L-ascorbic acid (L-AA); however, the combination of near ultraviolet (NUV) light to increase the reduction rate has yet to be thoroughly explored. In this study, drop-casted GO films were subjected to chemical reduction through L-AA with various levels of exposure under 405 nm NUV radiation. The structure and uniformity of GO stackings that form the film were characterized through scanning electron microscopy (SEM) and wide-angle x-ray scattering (WAXS). Additionally, WAXS was used to track the removal of oxygencontaining functional groups along with Fourier-transform infrared (FT-IR) spectroscopy and x-ray photoelectron spectroscopy (XPS) as a function of L-AA and NUV light exposure times. XPS results demonstrated that the interaction between L-AA and NUV exposure has a significant effect on the reduction of films. Furthermore, the results that yielded the highest reduction (C-C bond concentration of 60.7%) were the longest L-AA and NUV light exposure times (48 hours and 3 hours, respectively). This report provides a study on the effects of NUV on the green reduction of GO films through L-AA with potential application in solar energy and chemical sensing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.