The growing demand for wearable devices, soft robotics, and tissue engineering in recent years has led to an increased effort in the field of soft materials. With the advent of personalized devices, the one-shape-fits-all manufacturing methods may soon no longer be the standard for the rapidly increasing market of soft devices. Recent findings have pushed technology and materials in the area of additive manufacturing (AM) as an alternative fabrication method for soft functional devices, taking geometrical designs and functionality to greater heights. For this reason, this review aims to highlights recent development and advances in AM processable soft materials with self-healing, shape memory, electronic, chromic or any combination of these functional properties. Furthermore, the influence of AM on the mechanical and physical properties on the functionality of these materials is expanded upon. Additionally, advances in soft devices in the fields of soft robotics, biomaterials, sensors, energy harvesters, and optoelectronics are discussed. Lastly, current challenges in AM for soft functional materials and future trends are discussed.
Three different metamaterial structures were fabricated using stereolithography 3D printing and a shape recovering material. Mechanical properties and recovery efficiency were assessed after compression testing. All three structures exhibited similar initial specific compressive moduli, while the highest specific toughness was observed for the stretch-dominated structure. The three metamaterial structures were re-tested after shape recovery. Significant strengthening was observed for all structures, with the bend-stretch-dominated structure strengthening to the highest degree. This strengthening phenomenon was characterized as strain hardening. It was found that the strengthening is highly geometry dependent. The geometry with stretch-dominated behavior exhibited the highest mechanical properties after a second test was performed. Improvements in specific toughness of up to 67% were observed after the second compressive test.
Thermoplastic materials such as PA12 and PA6 have been extensively employed in Selective Laser Sintering (SLS) 3D printing applications due to their printability, processability, and crystalline structure. However, thermoplastic-based materials lack polymer inter-chain bonding, resulting in inferior mechanical and thermal properties and relatively low fatigue behavior. Therefore, 3D printing of high-performance crosslinked thermosets using SLS technology is paramount to pursue as an alternative to thermoplastics. In this work, a thermoset resin was successfully 3D printed using SLS, and its thermal stability of printed parts after a multi-step post-curing process was investigated. Dimensionally stable and high glass transition temperature (Tg: ~300 °C) thermoset parts were fabricated using SLS. The polymer crosslinking mechanism during the printing and curing process was investigated through FTIR spectra, while the mechanical stability of the SLS 3D-printed thermoset was characterized through compression tests. It is found that 100% crosslinked thermoset can be 3D printed with 900% higher compressive strength than printed green parts.
Fiber-reinforced thermoset composites are a class of materials that address the arising needs from the aerospace and hypersonic industries for high specific strength, temperature-resistant structural materials. Among the high-temperature resistant thermoset categories, phenolic triazine (PT) cyanate esters stand out thanks to their inherent high degradation temperature, glass transition temperature, and mechanical strength. Despite the outstanding properties of these thermosets, the performance of carbon fiber composites using PT cyanate esters as matrices has not been thoroughly characterized. This work evaluated PT and carbon fiber composites’ compressive properties and failure mechanisms with different fiber arrangements. A PT resin with both plain weave (PW) and non-crimped unidirectional (UD) carbon fiber mats was analyzed in this research. Highly loaded thermoset composites were obtained using process temperatures not exceeding 260 °C, and the composites proved to retain compressive strength at temperatures beyond 300 °C. Compressive testing revealed that PT composites retained compressive strength values of 50.4% of room temperature for UD composites and 61.4% for PW composites. Post-compressive failure observations of the gage section revealed that the mechanisms for failure evolved with temperature from brittle, delamination-dominant failure to shear-like failure promoted by the plastic failure of the matrix. This study demonstrated that PT composites are a good candidate for structural applications in harsh environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.