Inbreeding depression is a central parameter underlying mating system variation in nature and one that can be altered by environmental stress. Although a variety of systems show that inbreeding depression tends to increase under stressful conditions, we have very little understanding across most organisms how the level of inbreeding depression may change as a result of adaptation to stressors. In this work we examined the potential that inbreeding depression varied among lineages of Ipomoea purpurea artificially evolved to exhibit divergent levels of herbicide resistance. We examined inbreeding depression in a variety of fitness-related traits in both the growth chamber and in the field. We paired our examination of inbreeding depression in fitness-related traits with an examination of gene expression changes associated with the level of herbicide resistance, breeding history (inbred or outcrossed), and the interaction of the breeding system and the level of herbicide resistance. We found that, while inbreeding depression was present across many of the traits, lineages artificially selected for increased herbicide resistance often showed no evidence of inbreeding depression in the presence of herbicide, and in fact, showed evidence of outbreeding depression in some traits compared to non-selected control lines and lineages selected for increased herbicide susceptibility. Further, at the transcriptome level, the resistant selection lines had differing patterns of gene expression according to breeding type (inbred vs outcrossed) compared to the control and susceptible selection lines. Our data together indicate that inbreeding depression may be lessened in populations that are adapting to regimes of strong selection.
The adaptation of weedy plants to herbicide is both a significant problem in agriculture and a model for the study of rapid adaptation under regimes of strong selection. Despite recent advances in our understanding of simple genetic changes that lead to resistance, a significant gap remains in our knowledge of resistance controlled by many loci and the evolutionary factors that influence the maintenance of resistance over time. Here, we perform a multi-level analysis involving whole genome sequencing and assembly, resequencing, and gene expression analysis to both uncover putative loci involved in nontarget herbicide resistance and to examine evolutionary forces underlying the maintenance of resistance in natural populations. We found loci involved in herbicide detoxification, stress sensing, and alterations in the shikimate acid pathway to be under selection, and confirmed that detoxification is responsible for glyphosate resistance using a functional assay. Furthermore, we found interchromosomal linkage disequilibrium (ILD), most likely associated with epistatic selection, to influence NTSR loci found on separate chromosomes thus potentially mediating resistance through generations. Additionally, by combining the selection screen, differential expression, and LD analysis, we identified fitness cost loci that are strongly linked to resistance alleles, indicating the role of genetic hitchhiking in maintaining the cost. Overall, our work strongly suggests that NTSR glyphosate resistance in I. purpurea is conferred by multiple genes which are maintained through generations via ILD and that the fitness cost associated with resistance in this species is a by-product of genetic-hitchhiking.
Summary The adaptation of weeds to herbicide is both a significant problem in agriculture and a model of rapid adaptation. However, significant gaps remain in our knowledge of resistance controlled by many loci and the evolutionary factors that influence the maintenance of resistance. Here, using herbicide‐resistant populations of the common morning glory (Ipomoea purpurea), we perform a multilevel analysis of the genome and transcriptome to uncover putative loci involved in nontarget‐site herbicide resistance (NTSR) and to examine evolutionary forces underlying the maintenance of resistance in natural populations. We found loci involved in herbicide detoxification and stress sensing to be under selection and confirmed that detoxification is responsible for glyphosate (RoundUp) resistance using a functional assay. We identified interchromosomal linkage disequilibrium (ILD) among loci under selection reflecting either historical processes or additive effects leading to the resistance phenotype. We further identified potential fitness cost loci that were strongly linked to resistance alleles, indicating the role of genetic hitchhiking in maintaining the cost. Overall, our work suggests that NTSR glyphosate resistance in I. purpurea is conferred by multiple genes which are potentially maintained through generations via ILD, and that the fitness cost associated with resistance in this species is likely a by‐product of genetic hitchhiking.
Culex pipiens serves as the endemic vector of West Nile virus (WNV) in eastern North America, where house sparrows (HOSP, Passer domesticus) serve as a reservoir host. We tested the hypotheses that: (1) Attraction of Cx. pipiens to HOSP is influenced by bird age and (2) that age-specific variation in chemical profiles of bird uropygial gland secretions informs this choice. We conducted mosquito choice trials in an olfactometer and found that Cx. pipiens were more often attracted to adult sparrows over nestlings, however, they demonstrated no preference for adults over fledglings. Using gas chromatography-mass spectrometry we observed age-specific differences in the semi-volatile chemical profiles of house sparrow uropygial gland secretions. Contrary to our hypothesis, we found no significant difference in mosquito feeding preference between the secretions of adults and those of either nestlings or fledglings. We suggest that other chemical cues influence the feeding preference of Cx. pipiens, either independently of uropygial gland secretions, or synergistically with them.
How agricultural regimes, such as novel herbicide exposure, may influence plant-herbivore interactions and specifically patterns of plant herbivory has come under increased interest in recent years due to rapidly changing herbicide use in agroecosystems. This paper examines patterns of plant herbivory using three common agricultural weeds exposed to low doses of dicamba, a synthetic auxin herbicide that is exponentially increasing in use given the adoption of dicamba tolerant crops. We used a replicated field study to examine how the amount and type of chewing herbivory may be altered in Ipomoea purpurea (common morning glory, Convolvulaceae), Datura stramonium (jimsonweed, Solanaceae), and Abutilon theophrasti (velvetleaf, Malvaceae) exposed to dicamba drift (i.e., 1% of the field dose). We found an increase in chewing herbivory damage when plants were exposed to dicamba and changes in the type of herbivory following exposure. Chewing herbivory differed among species in the presence of dicamba drift: A. theophrasti and D. stramonium showed more total leaf-chewing herbivory than controls, but I. purpurea showed no difference in the overall amount of herbivory. We also found that the type of herbivory was significantly altered in drift. A. theophrasti and I. purpurea both exhibited declines in hole feeding but increases in margin feeding, whereas D. stramonium showed no such changes. Overall, our results show that herbicide drift can induce shifts in plant-herbivore interactions, highlighting the need for mechanistic studies to uncover the cause underlying the shifts and comparative studies on weed communities to understand long-term consequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.