Cicer reticulatum L. is the wild progenitor of the fourth most important legume crop chickpea (C. arietinum L.). We assembled short-read sequences into 416 Mb draft genome of C. reticulatum and anchored 78% (327 Mb) of this assembly to eight linkage groups. Genome annotation predicted 25,680 protein-coding genes covering more than 90% of predicted gene space. The genome assembly shared a substantial synteny and conservation of gene orders with the genome of the model legume Medicago truncatula. Resistance gene homologs of wild and domesticated chickpeas showed high sequence homology and conserved synteny. Comparison of gene sequences and nucleotide diversity using 66 wild and domesticated chickpea accessions suggested that the desi type chickpea was genetically closer to the wild species than the kabuli type. Comparative analyses predicted gene flow between the wild and the cultivated species during domestication. Molecular diversity and population genetic structure determination using 15,096 genome-wide single nucleotide polymorphisms revealed an admixed domestication pattern among cultivated (desi and kabuli) and wild chickpea accessions belonging to three population groups reflecting significant influence of parentage or geographical origin for their cultivar-specific population classification. The assembly and the polymorphic sequence resources presented here would facilitate the study of chickpea domestication and targeted use of wild Cicer germplasms for agronomic trait improvement in chickpea.
Leaf shape, a spectacularly diverse plant trait, varies across taxonomic levels, geography and in response to environmental differences. However, comprehensive intraspecific analyses of leaf shape variation across variable environments is surprisingly absent. Here, we performed a multilevel analysis of leaf shape using diverse accessions of sweet potato (Ipomoea batatas), and uncovered the role of genetics, environment, and G9E on this important trait.We examined leaf shape using a variety of morphometric analyses, and complement this with a transcriptomic survey to identify gene expression changes associated with shape variation. Additionally, we examined the role of genetics and environment on leaf shape by performing field studies in two geographically separate common gardens.We showed that extensive leaf shape variation exists within I. batatas, and identified promising candidate genes associated with this variation. Interestingly, when considering traditional measures, we found that genetic factors are largely responsible for most of leaf shape variation, but that the environment is highly influential when using more quantitative measures via leaf outlines.This extensive and multilevel examination of leaf shape shows an important role of genetics underlying a potentially important agronomic trait, and highlights that the environment can be a strong influence when using more quantitative measures of leaf shape.
The adaptation of weedy plants to herbicide is both a significant problem in agriculture and a model for the study of rapid adaptation under regimes of strong selection. Despite recent advances in our understanding of simple genetic changes that lead to resistance, a significant gap remains in our knowledge of resistance controlled by many loci and the evolutionary factors that influence the maintenance of resistance over time. Here, we perform a multi-level analysis involving whole genome sequencing and assembly, resequencing, and gene expression analysis to both uncover putative loci involved in nontarget herbicide resistance and to examine evolutionary forces underlying the maintenance of resistance in natural populations. We found loci involved in herbicide detoxification, stress sensing, and alterations in the shikimate acid pathway to be under selection, and confirmed that detoxification is responsible for glyphosate resistance using a functional assay. Furthermore, we found interchromosomal linkage disequilibrium (ILD), most likely associated with epistatic selection, to influence NTSR loci found on separate chromosomes thus potentially mediating resistance through generations. Additionally, by combining the selection screen, differential expression, and LD analysis, we identified fitness cost loci that are strongly linked to resistance alleles, indicating the role of genetic hitchhiking in maintaining the cost. Overall, our work strongly suggests that NTSR glyphosate resistance in I. purpurea is conferred by multiple genes which are maintained through generations via ILD and that the fitness cost associated with resistance in this species is a by-product of genetic-hitchhiking.
Summary The adaptation of weeds to herbicide is both a significant problem in agriculture and a model of rapid adaptation. However, significant gaps remain in our knowledge of resistance controlled by many loci and the evolutionary factors that influence the maintenance of resistance. Here, using herbicide‐resistant populations of the common morning glory (Ipomoea purpurea), we perform a multilevel analysis of the genome and transcriptome to uncover putative loci involved in nontarget‐site herbicide resistance (NTSR) and to examine evolutionary forces underlying the maintenance of resistance in natural populations. We found loci involved in herbicide detoxification and stress sensing to be under selection and confirmed that detoxification is responsible for glyphosate (RoundUp) resistance using a functional assay. We identified interchromosomal linkage disequilibrium (ILD) among loci under selection reflecting either historical processes or additive effects leading to the resistance phenotype. We further identified potential fitness cost loci that were strongly linked to resistance alleles, indicating the role of genetic hitchhiking in maintaining the cost. Overall, our work suggests that NTSR glyphosate resistance in I. purpurea is conferred by multiple genes which are potentially maintained through generations via ILD, and that the fitness cost associated with resistance in this species is likely a by‐product of genetic hitchhiking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.