Maillard model systems consisting of labeled D-[(13)C]glucoses and L-[(13)C]alanines have been utilized to identify the origin of carbon atoms in glycolaldehyde, pyruvaldehyde, 1-hydroxy-2-propanone (acetol), 2,3-butanedione, 3-hydroxy-2-butanone, 2,3-pentanedione, and compounds containing C(5) and C(6) intact glucose carbon chains. The origin of carbon atoms in glycolaldehyde and pyruvaldehyde was inferred from the analysis of label incorporation pattern of methyl and dimethylpyrazines. The origin of carbon atoms in the remaining compounds was determined by direct analysis. The data indicated that glycolaldehyde incorporated intact C5-C6 and C1-C2 carbon chains of glucose. Acetol and pyruvaldehyde incorporated intact C1-C2-C3 and C4-C5-C6 carbon chains of glucose. On the other hand, 2, 3-butanedione and 3-hydroxy-2-butanone incorporated intact C3-C4-C5-C6 carbon chain of glucose. In addition, analysis of compounds containing intact glucose C(5) carbon chains have indicated that glucose in the presence of L-alanine can lose either C-1 atom to produce a pentitol moiety responsible for the formation of furanmethanol or it can lose the C-6 atom to produce a pentose moiety responsible for the formation of furfural. Plausible mechanisms, consistent with the observed label incorporation, were proposed for the formation of sugar degradation products.
Model studies using independently labeled D-[(13)C]glucoses and L-[(13)C]alanines have indicated that 2,3-butanedione is formed by a single pathway involving only glucose carbon atoms, whereas 2, 3-pentanedione is formed by two pathways, one involving glucose carbon atoms (10%) and the other (90%) through the participation of C2'-C3' atoms of L-alanine and a C(3) carbon unit from D-glucose. Analysis of label incorporation into selected mass spectral fragments of 2,3-pentanedione have indicated that the C(3) carbon unit originates either from C1-C2-C3 or from C4-C5-C6 fragments of D-glucose. In addition, model studies with pyruvaldehyde and glyceraldehyde have implicated these intermediates as plausible C(3) glucose carbon units capable of producing 2,3-pentanedione upon reaction with L-alanine. The labeling studies have also confirmed a previously identified chemical transformation of alpha-keto aldehydes affected by the amino acid that leads to the addition of the C-2 atom of the amino acid to the aldehydic carbon atom of alpha-keto aldehydes.
Maillard model systems consisting of labeled D-[(13)C]glucoses, L-[(15)N]methionine, and L-[methyl-(13)C]methionine, have been utilized to identify the amino acid and carbohydrate fragmentation pathways occurring in the model system through Py-GC/MS analysis. The label incorporation analyses have indicated that the carbohydrate moiety produces 1-deoxy- and 3-deoxyglucosones and undergoes C(2)/C(4) and C(3)/C(3) cleavages to produce glycolaldehyde, tetrose, and C(3)-reactive sugar derivatives such as acetol, glyceraldehyde, and pyruvaldehyde. Glycolaldehyde was found to incorporate C-1, C-2 (70%) and C-5, C-6 (30%) glucose carbon fragments, whereas the tetrose moiety incorporates only C-3, C-4, C-5, C-6 glucose carbon atoms. In addition, the major source of reactive C(3) fragments was found to contain C-4, C-5, C-6 sugar moiety. On the other hand, methionine alone also generated Strecker aldehyde as detected by its condensation product with 3-(methylthio)propylamine. Plausible mechanisms were proposed for the formation of the interaction products between sugar and amino acid degradation products on the basis of the label incorporation patterns.
Pyrolysis/GC/MS was applied to the study of primary and secondary pyrolysis products of l-[(2'carboxy)pyrrolidinyl]-l-deoxy-D-fructose (proline Amadori compound). The Amadori product was pyrolyzed on a ribbon probe at 150, 200, 250, 300, an 350 °C for 10 s. The main products formed under these conditions were l-(r-pyrrolidinyl)-2-propanone, 2-hydroxy-1-(l'-pyrrolidinyl)-1 -buten-3-one, and 2,3-dihydro-3,5-dihydroxy-6-methyl-4(fT)-pyran-4-one in addition to acetic acid and pyrrolidine. To produce secondary pyrolysis products, the Amadori compound was pyrolyzed at 250 °C in a quartz tube for 20 s; 14 secondary pyrolysis products were identified. The majority of the products were also reported to be formed during autoclaving of proline/monosaccharide mixtures at 150 °C for 1.5 h in water. In addition, the pyrolysis of D-glucose/proline and the proline Amadori compound was compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.