We report the findings of the second Complex Word Identification (CWI) shared task organized as part of the BEA workshop colocated with NAACL-HLT'2018. The second CWI shared task featured multilingual and multi-genre datasets divided into four tracks: English monolingual, German monolingual, Spanish monolingual, and a multilingual track with a French test set, and two tasks: binary classification and probabilistic classification. A total of 12 teams submitted their results in different task/track combinations and 11 of them wrote system description papers that are referred to in this report and appear in the BEA workshop proceedings.
This paper is concerned with the task of automatically assessing the written proficiency level of non-native (L2) learners of English. Drawing on previous research on automated L2 writing assessment following the Common European Framework of Reference for Languages (CEFR), we investigate the possibilities and difficulties of deriving the CEFR level from short answers to open-ended questions, which has not yet been subjected to numerous studies up to date.The object of our study is twofold: to examine the intricacy involved with both human and automated CEFR-based grading of short answers. On the one hand, we describe the compilation of a learner corpus of short answers graded with CEFR levels by three certified Cambridge examiners. We mainly observe that, although the shortness of the answers is reported as undermining a clear-cut evaluation, the length of the answer does not necessarily correlate with inter-examiner disagreement. On the other hand, we explore the development of a soft-voting system for the automated CEFR-based grading of short answers and draw tentative conclusions about its use in a computer-assisted testing (CAT) setting.
We describe a system for the CWI-task that includes information on 5 aspects of the (complex) lexical item, namely distributional information of the item itself, morphological structure, psychological measures, corpus-counts and topical information. We constructed a deep learning architecture that combines those features and apply it to the probabilistic and binary classification task for all English sets and Spanish. We achieved reasonable performance on all sets with best performances seen on the probabilistic task, particularly on the English news set (MAE 0.054 and F1-score of 0.872). An analysis of the results shows that reasonable performance can be achieved with a single architecture without any domainspecific tweaking of the parameter settings and that distributional features capture almost all of the information also found in hand-crafted features.
In this paper, we introduce NT2Lex, a novel lexical resource for Dutch as a foreign language (NT2) which includes frequency distributions of 17,743 words and expressions attested in expert-written textbook texts and readers graded along the scale of the Common European Framework of Reference (CEFR). In essence, the lexicon informs us about what kind of vocabulary should be understood when reading Dutch as a non-native reader at a particular proficiency level.The main novelty of the resource with respect to the previously developed CEFR-graded lexicons concerns the introduction of corpusbased evidence for L2 word sense complexity through the linkage to Open Dutch WordNet (Postma et al., 2016). The resource thus contains, on top of the lemmatised and part-ofspeech tagged lexical entries, a total of 11,999 unique word senses and 8,934 distinct synsets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.