T cell AgR ζ chain down-regulation associated with T cell dysfunction has been described in cancer, infectious, and autoimmune diseases. We have previously shown that chronic inflammation is mandatory for the induction of an immunosuppressive environment leading to this phenomenon. To identify the key immunosuppressive components, we used an in vivo mouse model exhibiting chronic inflammation-induced immunosuppression. Herein, we demonstrate that: 1) under chronic inflammation secondary lymphatic organs display various immunological milieus; ζ chain down-regulation and T cell dysfunction are induced in the spleen, peripheral blood, and bone marrow, but not in lymph nodes, correlating with elevated levels of Gr1+Mac-1+ myeloid suppressor cells (MSC); 2) MSC are responsible for the induction of such an immunosuppression under both normal and inflammatory conditions; and 3) normal T cells administered into mice exhibiting an immunosuppressive environment down-regulate their ζ expression. Such an environment is anticipated to limit the success of immunotherapeutic strategies based on vaccination and T cell transfer, which are currently under investigation for immunotherapy of cancer.
T cell antigen receptor zeta chain down-regulation and impaired in vitro T cell function have been described in cancer and autoimmune and infectious diseases. However, the immunological basis for this phenomenon is unknown. Sustained exposure to antigen and chronic systemic inflammation, factors shared by the various pathologies, might account for this phenomenon. We developed an in vivo experimental system that mimics these conditions and show that sustained exposure of mice to bacterial antigens was sufficient to induce T cell antigen receptor zeta chain down-regulation and impair T cell function, provided an interferon-gamma-dependent T helper type 1 immune response developed. This indicates zeta chain down-regulation could be a physiological response that attenuates an exacerbated immune response. However, it can act as a 'double-edged sword', impairing immune responses to chronic diseases.
Together with plague, smallpox and typhus, epidemics of dysentery have been a major scourge of human populations for centuries(1). A previous genomic study concluded that Shigella dysenteriae type 1 (Sd1), the epidemic dysentery bacillus, emerged and spread worldwide after the First World War, with no clear pattern of transmission(2). This is not consistent with the massive cyclic dysentery epidemics reported in Europe during the eighteenth and nineteenth centuries(1,3,4) and the first isolation of Sd1 in Japan in 1897(5). Here, we report a whole-genome analysis of 331 Sd1 isolates from around the world, collected between 1915 and 2011, providing us with unprecedented insight into the historical spread of this pathogen. We show here that Sd1 has existed since at least the eighteenth century and that it swept the globe at the end of the nineteenth century, diversifying into distinct lineages associated with the First World War, Second World War and various conflicts or natural disasters across Africa, Asia and Central America. We also provide a unique historical perspective on the evolution of antibiotic resistance over a 100-year period, beginning decades before the antibiotic era, and identify a prevalent multiple antibiotic-resistant lineage in South Asia that was transmitted in several waves to Africa, where it caused severe outbreaks of disease.
Macrolides have been effective clinical antibiotics for over 70 years. They inhibit protein biosynthesis in bacterial pathogens by narrowing the nascent protein exit tunnel in the ribosome. The macrolide class of natural products consist of a macrolactone ring linked to one or more sugar molecules. Most of the macrolides used currently are semi-synthetic erythromycin derivatives, composed of a 14- or 15-membered macrolactone ring. Rapidly emerging resistance in bacterial pathogens is among the most urgent global health challenges, which render many antibiotics ineffective, including next-generation macrolides. To address this threat and advance a longer-term plan for developing new antibiotics, we demonstrate how 16-membered macrolides overcome erythromycin resistance in clinically isolated Staphylococcus aureus strains. By determining the structures of complexes of the large ribosomal subunit of Deinococcus radiodurans (D50S) with these 16-membered selected macrolides, and performing anti-microbial studies, we identified resistance mechanisms they may overcome. This new information provides important insights toward the rational design of therapeutics that are effective against drug resistant human pathogens.
Whole-genome sequencing unveiled host and environment-related insights to Shigella sonnei transmission within cyclic epidemics during 2000–2012 in Israel. The Israeli reservoir contains isolates belonging to S. sonnei lineage III but of different origin, shows loss of tetracycline resistance genes, and little genetic variation within the O antigen: highly relevant for Shigella vaccine development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.