Cellular metabolic dysregulation is a consequence of SARS-CoV-2 infection that is a key determinant of disease severity. However, how metabolic perturbations influence immunological function during COVID-19 remains unclear. Here, using a combination of high-dimensional flow cytometry, cutting-edge single-cell metabolomics, and re-analysis of single-cell transcriptomic data, we demonstrate a global hypoxia-linked metabolic switch from fatty acid oxidation and mitochondrial respiration towards anaerobic, glucose-dependent metabolism in CD8+Tc, NKT, and epithelial cells. Consequently, we found that a strong dysregulation in immunometabolism was tied to increased cellular exhaustion, attenuated effector function, and impaired memory differentiation. Pharmacological inhibition of mitophagy with mdivi-1 reduced excess glucose metabolism, resulting in enhanced generation of SARS-CoV-2- specific CD8+Tc, increased cytokine secretion, and augmented memory cell proliferation. Taken together, our study provides critical insight regarding the cellular mechanisms underlying the effect of SARS-CoV-2 infection on host immune cell metabolism, and highlights immunometabolism as a promising therapeutic target for COVID-19 treatment.
Cellular metabolic dysregulation is a consequence of COVID-19 infection that is a key determinant of disease severity. To understand the mechanisms underlying these cellular changes, we performed high-dimensional immune cell profiling of PBMCs from COVID-19-infected patients, in combination with single cell transcriptomic analysis of COVID-19 BALFs. Hypoxia, a hallmark of COVID-19 ARDS, was found to elicit a global metabolic reprogramming in effector lymphocytes. In response to oxygen and nutrient-deprived microenvironments, these cells shift from aerobic respiration to increase their dependence on anaerobic processes including glycolysis, mitophagy, and glutaminolysis to fulfill their bioenergetic demands. We also demonstrate metabolic dysregulation of ciliated lung epithelial cells is linked to significant increase of proinflammatory cytokine secretion and upregulation of HLA class 1 machinery. Augmented HLA class-1 antigen stimulation by epithelial cells leads to cellular exhaustion of metabolically dysregulated CD8 and NK cells, impairing their memory cell differentiation. Unsupervised clustering techniques revealed multiple distinct, differentially abundant CD8 and NK memory cell states that are marked by high glycolytic flux, mitochondrial dysfunction, and cellular exhaustion, further highlighting the connection between disrupted metabolism and impaired memory cell function in COVID-19. Our findings provide novel insight on how SARS-CoV-2 infection affects host immunometabolism and anti-viral response during COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.