BackgroundAlthough our understanding of the immunopathology and subsequent risk and severity of COVID-19 disease is evolving, a detailed account of immune responses that contribute to the long-term consequences of pulmonary complication in COVID-19 infection remain unclear. Few studies have detailed the immune and cytokine profiles associated with post-acute sequalae of SARS-CoV-2 infection with persistent pulmonary symptoms (PPASC). However, the dysregulation of the immune system that drives pulmonary sequelae in COVID-19 survivors and PASC sufferers remains largely unknown.ResultsTo characterize the immunological features of pulmonary PASC (PPASC), we performed droplet-based single-cell RNA sequencing to study the transcriptomic profiles of peripheral blood mononuclear cells (PBMCs) from participants naïve to SARS-CoV-2 (Control) and infected with SARS-CoV-2 with chronic pulmonary symptoms (PPASC). We analyzed more than 34,139 PBMCs by integrating our dataset with previously reported control datasets (GSM4509024) cell distribution. In total, 11 distinct cell populations were identified based on the expression of canonical markers. The proportion of myeloid-lineage cells ([MLCs]; CD14+/CD16+monocytes and dendritic cells) was increased in PPASC compared to controls. MLCs from PPASC displayed up-regulation of genes associated with pulmonary symptoms/fibrosis, while glycolysis metabolism-related genes were downregulated. Similarly, pathway analysis showed that fibrosis- related (VEGF,WNT, andSMAD) and cell death pathways were up-regulated, but immune pathways were down-regulated in PPASC. In PPASC, we observed interactiveVEGFligand- receptor pairs among MLCs, and network modules in CD14+(cluster 4) and CD16+(Cluster 5) monocytes displayed a significant enrichment for biological pathways linked to adverse COVID- 19 outcomes, fibrosis, and angiogenesis. Further analysis revealed a distinct metabolic alteration in MLCs with a down-regulation of glycolysis/gluconeogenesis in PPASC compared to SARS- CoV-2 naïve samples.ConclusionThis study offers valuable insights into the immune response and cellular landscape in PPASC. The presence of elevated MLC levels and their corresponding gene signatures associated with fibrosis, immune response suppression, and altered metabolic states suggests their potential role as a driver of PPASC.