BackgroundMonocytes and macrophages play a pivotal role in inflammation during acute SARS-CoV-2 infection. However, their contribution to the development of post-acute sequelae of SARS-CoV-2 infection (PASC) are not fully elucidated.MethodsA cross-sectional study was conducted comparing plasma cytokine and monocyte levels among three groups: participants with pulmonary PASC (PPASC) with a reduced predicted diffusing capacity for carbon monoxide [DLCOc, <80%; (PG)]; fully recovered from SARS-CoV-2 with no residual symptoms (recovered group, RG); and negative for SARS-CoV-2 (negative group, NG). The expressions of cytokines were measured in plasma of study cohort by Luminex assay. The percentages and numbers of monocyte subsets (classical, intermediate, and non-classical monocytes) and monocyte activation (defined by CD169 expression) were analyzed using flow cytometry analysis of peripheral blood mononuclear cells.ResultsPlasma IL-1Ra levels were elevated but FGF levels were reduced in PG compared to NG. Circulating monocytes and three subsets were significantly higher in PG and RG compared to NG. PG and RG exhibited higher levels of CD169+ monocyte counts and higher CD169 expression was detected in intermediate and non-classical monocytes from RG and PG than that found in NG. Further correlation analysis with CD169+ monocyte subsets revealed that CD169+ intermediate monocytes negatively correlated with DLCOc%, and CD169+ non-classical monocytes positively correlated with IL-1α, IL-1β, MIP-1α, Eotaxin, and IFN-γ.ConclusionThis study present evidence that COVID convalescents exhibit monocyte alteration beyond the acute COVID-19 infection period even in convalescents with no residual symptoms. Further, the results suggest that monocyte alteration and increased activated monocyte subsets may impact pulmonary function in COVID-19 convalescents. This observation will aid in understanding the immunopathologic feature of pulmonary PASC development, resolution, and subsequent therapeutic interventions.
BackgroundAlthough our understanding of the immunopathology and subsequent risk and severity of COVID-19 disease is evolving, a detailed account of immune responses that contribute to the long-term consequences of pulmonary complication in COVID-19 infection remain unclear. Few studies have detailed the immune and cytokine profiles associated with post-acute sequalae of SARS-CoV-2 infection with persistent pulmonary symptoms (PPASC). However, the dysregulation of the immune system that drives pulmonary sequelae in COVID-19 survivors and PASC sufferers remains largely unknown.ResultsTo characterize the immunological features of pulmonary PASC (PPASC), we performed droplet-based single-cell RNA sequencing to study the transcriptomic profiles of peripheral blood mononuclear cells (PBMCs) from participants naïve to SARS-CoV-2 (Control) and infected with SARS-CoV-2 with chronic pulmonary symptoms (PPASC). We analyzed more than 34,139 PBMCs by integrating our dataset with previously reported control datasets (GSM4509024) cell distribution. In total, 11 distinct cell populations were identified based on the expression of canonical markers. The proportion of myeloid-lineage cells ([MLCs]; CD14+/CD16+monocytes and dendritic cells) was increased in PPASC compared to controls. MLCs from PPASC displayed up-regulation of genes associated with pulmonary symptoms/fibrosis, while glycolysis metabolism-related genes were downregulated. Similarly, pathway analysis showed that fibrosis- related (VEGF,WNT, andSMAD) and cell death pathways were up-regulated, but immune pathways were down-regulated in PPASC. In PPASC, we observed interactiveVEGFligand- receptor pairs among MLCs, and network modules in CD14+(cluster 4) and CD16+(Cluster 5) monocytes displayed a significant enrichment for biological pathways linked to adverse COVID- 19 outcomes, fibrosis, and angiogenesis. Further analysis revealed a distinct metabolic alteration in MLCs with a down-regulation of glycolysis/gluconeogenesis in PPASC compared to SARS- CoV-2 naïve samples.ConclusionThis study offers valuable insights into the immune response and cellular landscape in PPASC. The presence of elevated MLC levels and their corresponding gene signatures associated with fibrosis, immune response suppression, and altered metabolic states suggests their potential role as a driver of PPASC.
Highly effective combination antiretroviral therapy has reduced HIV infection to a manageable chronic disease, shifting the clinical landscape toward management of noninfectious comorbidities in people living with HIV (PLWH). These comorbidities are diverse, generally associated with accelerated aging, and present within multiple organ systems. Mechanistically, immune dysregulation and chronic inflammation, both of which persist in PLWH with well-controlled virally suppressive HIV infection, are suggested to create and exacerbate noninfectious comorbidity development. Persistent inflammation often leads to fibrosis, which is the common end point pathologic feature associated with most comorbidities. Fibrocytes are bone marrow–derived fibroblast-like cells, which emerged as key effector cells in tissue repair and pathologic fibrotic diseases. Despite their relevance to fibrosis, the circulating fibrocyte concentration in PLWH remains poorly characterized, and an understanding of their functional role in chronic HIV is limited. In this study, utilizing PBMCs from a cross-sectional adult HIV cohort study with matched uninfected controls (HIV−), we aimed to identify and compare circulating fibrocytes in blood. Both the percentage and number of fibrocytes and α-smooth muscle actin+ fibrocytes in circulation did not differ between the HIV+ and HIV− groups. However, circulating fibrocyte levels were significantly associated with increasing age in both the HIV+ and HIV− groups (the percentage and number; r = 0.575, p ≤ 0.0001 and r = 0.558, p ≤ 0.0001, respectively). Our study demonstrates that circulating fibrocyte levels and their fibroblast-like phenotype defined as collagen I and α-smooth muscle actin+ expression are comparable between, and strongly associated with, age irrespective of HIV status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.