IntroductionThe mechanisms leading to chronic kidney disease (CKD) in patients with idiopathic inflammatory myopathies (IIMs) are poorly understood. We assessed the prevalence of subclinical renal injury in patients with IIMs, through elevation in biomarker levels of tubular injury and fibrosis (NGAL, KIM1, Activin A, CD163, and Cys-c), and assessed differences between subtypes of IIMs, and the effect of disease activity and duration.Materials and methodsClinical data, core set measures, sera and urine were prospectively collected from all patients enrolled in the MyoCite cohort from 2017 to 2021. Twenty healthy subjects (HC) and 16 patients with acute kidney injury (AKI) were included as controls. Baseline and follow up data for IIMs were included. Enzyme-linked immunosorbent assay (ELISA) was used to measure urine NGAL (Human Lipocalin-2/NGAL Duoset ELISA, Cat no: DY1757), KIM1 (Human TIM-1/KIM 1/HAVCR Duoset ELISA, Cat.no: DY1750B), Activin A (Human Activin A Duoset ELISA, Cat no: DY338), CD163 (Human CD163 Duoset ELISA,Cat no: DY1607-05), and Cys-c (Human Cystatin C Duoset ELISA, Cat. no.: DY1196) levels, while eGFR (unit mL/min/1.73 m2) was calculated by the Cockcroft-Gault formula and CKD-EPI formula.ResultsAnalysis of 201 visits of 110 adult patients with IIMs indicated higher normalized biomarker levels compared to HCs, and comparable to patients with AKI, with the exception of NGAL, which was higher in the AKI group. Notably 72 (49%) patients with IIMs had eGFR<90; the levels of the 5 biomarkers were comparable between active and inactive IIMs, and different subtypes of IIMs. Similarly, a poor correlation between urine biomarker levels and core set measures of activity and damage was found. Changes in biomarker levels on follow-up did not correlate with eGFR changes.DiscussionThis exploratory analysis of urinary biomarkers identified low eGFR and elevated biomarkers of CKD in nearly half of the patients with IIMs, comparable to patients with AKI and higher than HCs, indicative of potential renal damage in IIMs that may have a lead to complications in other systems.