Titanium dioxide nanoparticles (TiO2 NPs) have been used in various medical and industrial areas. However, the impacts of these nanoparticles on neuroinflammation in the brain are poorly understood. In this study, mice were exposed to 2.5, 5, or 10 mg/kg body weight TiO2 NPs for 90 consecutive days, and the TLRs/TNF-α/NF-κB signaling pathway associated with the hippocampal neuroinflammation was investigated. Our findings showed titanium accumulation in the hippocampus, neuroinflammation and impairment of spatial memory in mice following exposure to TiO2 NPs. Furthermore, TiO2 NPs significantly activated the expression of Toll-like receptors (TLR2, TLR4), tumor necrosis factor-α, nucleic IκB kinase, NF-κB-inducible kinase, nucleic factor–κB, NF-κB2(p52), RelA(p65), and significantly suppressed the expression of IκB and interleukin-2. These findings suggest that neuroinflammation may be involved in TiO2 NP-induced alterations of cytokine expression in mouse hippocampus. Therefore, more attention should be focused on the application of TiO2 NPs in the food industry and their long-term exposure effects, especially in the human central nervous system.
Exposure to titanium dioxide nanoparticles (TiO2 NPs) has been demonstrated to decrease learning and memory of animals. However, whether the impacts of these NPs on the recognition function are involved in hippocamal neuron damages is poorly understood. In this study, primary cultured hippocampal neurons from one-day-old fetal Sprague-Dawley rats were exposed to 5, 15, or 30 µg/mL TiO2 NPs for 24 h, we investigated cell viability, ultrastructure, and mitochondrial membrane potential (MMP), calcium homeostasis, oxidative stress, antioxidant capacity, apoptotic signaling pathway associated with the primary cultured hippocamal neuron apoptosis. Our findings showed that TiO2 NP treatment resulted in reduction of cell viability, promoted lactate dehydrogenase release, apoptosis, and increased neuron apoptotic rate in a dose-dependent manner. Furthermore, TiO2 NPs led to [Ca(2+)]i elevation, and MMP reduction, up-regulated protein expression of cytochrome c, Bax, caspase-3, glucose-regulated protein 78, C/EBP homologous protein and caspase-12, and down-regulated bcl-2 expression in the primary cultured hippocampal neurons. These findings suggested that hippocampal neuron apoptosis caused by TiO2 NPs may be associated with mitochondria-mediated signal pathway and endoplasmic reticulum-mediated signal pathway.
Aconitine (ACO), a highly toxic diterpenoid alkaloid, is recognized to have effects on cardiac voltage-gated Na(+) channels. However, it remains unknown whether it has any effects on K(+) currents. The effects of ACO on ion currents in differentiated clonal cardiac (H9c2) cells and in cultured neonatal rat ventricular myocytes were investigated in this study. In H9c2 cells, ACO suppressed ultrarapid-delayed rectifier K(+) current (I(Kur)) in a time- and concentration-dependent fashion. The IC(50) value for ACO-induced inhibition of I(Kur) was 1.4 microM. ACO could accelerate the inactivation of I(Kur) with no change in the activation time constant of this current. Steady-state inactivation curve of I(Kur) during exposure to ACO could be demonstrated. Recovery from block by ACO was fitted by a single-exponential function. The inhibition of I(Kur) by ACO could still be observed in H9c2 cells preincubated with ruthenium red (30 microM). Intracellular dialysis with ACO (30 microM) had no effects on I(Kur). I(Kur) elicited by simulated action potential (AP) waveforms was sensitive to block by ACO. Single-cell Ca(2+) imaging revealed that ACO (10 microM) alone did not affect intracellular Ca(2+) in H9c2 cells. In cultured neonatal rat ventricular myocytes, ACO also blocked I(Kur) and prolonged AP along with appearance of early afterdepolarizations. Multielectrode recordings on neonatal rat ventricular tissues also suggested that ACO-induced electrocardiographic changes could be associated with inhibition of I(Kur). This study provides the evidence that ACO can produce a depressant action on I(Kur) in cardiac myocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.