In this study, the authors demonstrate the fabrication, calibration, and testing of a piezoresistive microcantileverbased sensor for biomedical microelectromechanical system (BioMEMS) application. To use any sensor in BioMEMS application requires surface modification to capture the targeted biomolecules. The surface alteration comprises self-assembled monolayer (SAM) formation on gold (Au)/chromium (Cr) thin films. So, the Au/Cr coating is essential for most of the BioMEMS applications. The fabricated sensor uses the piezoresistive technique to capture the targeted biomolecules with the SAM/Au/Cr layer on top of the silicon dioxide layer. The stiffness (k) of the cantilever-based biosensor is a crucial design parameter for the low-pressure range and also influence the sensitivity of the microelectromechanical system-based sensor. Based on the calibration data, the average stiffness of the fabricated microcantilever with and without Au/Cr thin film is 141.39 and 70.53 mN/m, respectively, which is well below the maximum preferred range of stiffness for BioMEMS applications. The fabricated sensor is ultra-sensitive and selective towards Hg 2+ ions in the presence of other heavy metal ions (HMIs) and good enough to achieve a lower limit of detection 0.75 ng/ml (3.73 pM/ml).
Purpose
This paper aims to propose a new microfluidic portable experimental platform for quick detection of heavy metal ions (HMIs) in picomolar range. The experimental setup uses a microfabricated piezoresistive sensor (MPS) array of eight cantilevers with ion-selective self-assembled monolayer's (SAM).
Design/methodology/approach
Most of the components used in this experimental setup are battery operated and, hence, portable to perform the on-field experiments. HMIs (antigen) and thiol-based SAM (antibody) interaction start bending the microcantilever. This results in a change of resistance, which is directly proportional to the surface stress produced due to the mass of targeted HMIs. The authors have used Cysteamine and 4-Mercaptobenzoic acid as a thiol for creating SAM to test the sensitivity and identify the suitable thiol. Some of the cantilevers are blocked using acetyl chloride to use as a reference for error detection.
Findings
The portable experimental platform achieves very small detection time of 10-25 min with a lower limit of detection (LOD) 0.762 ng (6.05 pM) for SAM of Cysteamine and 4-Mercaptobenzoic acid to detect Mn2+ ions. This technique has excellent potential and capability to selectively detect Hg2+ ions as low as 2.43 pM/mL using SAM of Homocysteine (Hcys)-Pyridinedicarboxylic acid (PDCA).
Research limitations/implications
As microcantilever is very thin and fragile, it is challenging to apply a surface coating to have selective detection using Nanadispenser. Some of the cantilevers get broken during this process.
Originality/value
The excessive use and commercialization of NPs are quickly expanding their toxic impact on health and the environment. Also, LOD is limited to nanomolar range. The proposed method used the combination of thin-film, NPs, and MEMS-based technology to overcome the limitation of NPs-based technique and have picomolar range of HMIs detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.