BACKGROUND: Liver dysfunction is associated with protean manifestations in skin, nails and hairs. OBJECTIVE: To study cutaneous manifestations in liver diseases. METHODS & MATERIALS: The patients of liver disease of any etiology and either sex, from January 2010 to
Millimeter-wave sensing using automotive radar imposes high requirements on the applied signal processing in order to obtain the necessary resolution for current imaging radar. High-resolution direction of arrival estimation is needed to achieve the desired spatial resolution, limited by the total antenna array aperture. This work gives an overview of the recent progress and work in the field of deep learning based direction of arrival estimation in the automotive radar context, i.e. using only a single measurement snapshot. Additionally, several deep learning models are compared and investigated with respect to their suitability for automotive angle estimation. The models are trained with model-and databased approaches for data generation, including simulated scenarios as well as real measurement data from more than 400 automotive radar sensors. Finally, their performance is compared to several baseline angle estimation algorithms like the maximum-likelihood estimator. All results are discussed with respect to the estimation error, the resolution of closely spaced targets and the total estimation accuracy. The overall results demonstrate the viability and advantages of the proposed data generation methods, as well as superresolution capabilities of several architectures.
Vehicular communication systems get more and more attention with the upcoming fifth and sixth generation. Hereby, the focus lies on the development of the co-design or co-existence of communications and sensing. So called joints communications and radar sensing systems are seen as one key technology of 6G. As joint systems will have shared waveforms and hardware platforms, there is a huge benefit in cost and space which is one essential argument for the automotive industry. However, to design such a system for new applications like platooning or intersection assistance a physical layer has to be set up to represent the real physical layer properly. The proposed system design closes the lack of such a simulation tool and allows for full physical layer simulations, including e. g. the hardware non-idealities and the channel model for 77 GHz. The whole signal processing chain of the physical layer is built up and will be integrated in the higher layer state-of-the-art simulation frameworks like Veins or Artery in the next step. The communications design is developed in Simulink, whereas the sensing part is discussed. The proposed communications architecture covers several transmission approaches (serial, parallel), a CDMA based spreading, a radio frequency representation, the channel (simulated in a 3D-Ray-Tracing-tool) and the receiver structure (e. g. the synchronisation or the channel estimation). Several design criteria are discussed, like the serial or parallel design architecture, the maximum ratio combining or the phase and frequency compensation method. The whole system architecture is freely available (https://doi.org/10.5281/zenodo.6482565) and in consequence, the different signal blocks and parameters can be enabled or disabled for evaluations according to future design criteria requirements.INDEX TERMS Hardware non-idealities, connected vehicles, joint communications and radar sensing, millimeter wave technology, physical layer, Simulink.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.