The problem of recognizing text in images taken in the wild has gained significant attention from the computer vision community in recent years. Contrary to recognition of printed documents, recognizing scene text is a challenging problem. We focus on the problem of recognizing text extracted from natural scene images and the web. Significant attempts have been made to address this problem in the recent past. However, many of these works benefit from the availability of strong context, which naturally limits their applicability. In this work we present a framework that uses a higher order prior computed from an English dictionary to recognize a word, which may or may not be a part of the dictionary. We show experimental results on publicly available datasets. Furthermore, we introduce a large challenging word dataset with five thousand words to evaluate various steps of our method exhaustively.The main contributions of this work are: (1) We present a framework, which incorporates higher order statistical language models to recognize words in an unconstrained manner (i.e. we overcome the need for restricted word lists, and instead use an English dictionary to compute the priors). (2) We achieve significant improvement (more than 20%) in word recognition accuracies without using a restricted word list. (3) We introduce a large word recognition dataset (atleast 5 times larger than other public datasets) with character level annotation and benchmark it.
Scene text recognition has gained significant attention from the computer vision community in recent years. Recognizing such text is a challenging problem, even more so than the recognition of scanned documents. In this work, we focus on the problem of recognizing text extracted from street images. We present a framework that exploits both bottom-up and top-down cues. The bottom-up cues are derived from individual character detections from the image. We build a Conditional Random Field model on these detections to jointly model the strength of the detections and the interactions between them. We impose top-down cues obtained from a lexicon-based prior, i.e. language statistics, on the model. The optimal word represented by the text image is obtained by minimizing the energy function corresponding to the random field model.We show significant improvements in accuracies on two challenging public datasets, namely Street View Text (over 15%) and ICDAR 2003 (nearly 10%).
Visual Question Answering (VQA) has emerged as an important problem spanning Computer Vision, Natural Language Processing and Artificial Intelligence (AI). In conventional VQA, one may ask questions about an image which can be answered purely based on its content. For example, given an image with people in it, a typical VQA question may inquire about the number of people in the image. More recently, there is growing interest in answering questions which require commonsense knowledge involving common nouns (e.g., cats, dogs, microphones) present in the image. In spite of this progress, the important problem of answering questions requiring world knowledge about named entities (e.g., Barack Obama, White House, United Nations) in the image has not been addressed in prior research. We address this gap in this paper, and introduce KVQA – the first dataset for the task of (world) knowledge-aware VQA. KVQA consists of 183K question-answer pairs involving more than 18K named entities and 24K images. Questions in this dataset require multi-entity, multi-relation, and multi-hop reasoning over large Knowledge Graphs (KG) to arrive at an answer. To the best of our knowledge, KVQA is the largest dataset for exploring VQA over KG. Further, we also provide baseline performances using state-of-the-art methods on KVQA.
We present an approach for the text-to-image retrieval problem based on textual content present in images. Given the recent developments in understanding text in images, an appealing approach to address this problem is to localize and recognize the text, and then query the database, as in a text retrieval problem. We show that such an approach, despite being based on state-of-the-art methods, is insufficient, and propose a method, where we do not rely on an exact localization and recognition pipeline. We take a query-driven search approach, where we find approximate locations of characters in the text query, and then impose spatial constraints to generate a ranked list of images in the database. The retrieval performance is evaluated on public scene text datasets as well as three large datasets, namely IIIT scene text retrieval, Sports-10K and TV series-1M, we introduce.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.