We investigate the fine grained object categorization problem of determining the breed of animal from an image. To this end we introduce a new annotated dataset of pets covering 37 different breeds of cats and dogs. The visual problem is very challenging as these animals, particularly cats, are very deformable and there can be quite subtle differences between the breeds.We make a number of contributions: first, we introduce a model to classify a pet breed automatically from an image. The model combines shape, captured by a deformable part model detecting the pet face, and appearance, captured by a bag-of-words model that describes the pet fur. Fitting the model involves automatically segmenting the animal in the image. Second, we compare two classification approaches: a hierarchical one, in which a pet is first assigned to the cat or dog family and then to a breed, and a flat one, in which the breed is obtained directly. We also investigate a number of animal and image orientated spatial layouts.These models are very good: they beat all previously published results on the challenging ASIRRA test (cat vs dog discrimination). When applied to the task of discriminating the 37 different breeds of pets, the models obtain an average accuracy of about 59%, a very encouraging result considering the difficulty of the problem.
The automatic discovery of distinctive parts for an object or scene class is challenging since it requires simultaneously to learn the part appearance and also to identify the part occurrences in images. In this paper, we propose a simple, efficient, and effective method to do so. We address this problem by learning parts incrementally, starting from a single part occurrence with an Exemplar SVM. In this manner, additional part instances are discovered and aligned reliably before being considered as training examples. We also propose entropy-rank curves as a means of evaluating the distinctiveness of parts shareable between categories and use them to select useful parts out of a set of candidates.We apply the new representation to the task of scene categorisation on the MIT Scene 67 benchmark. We show that our method can learn parts which are significantly more informative and for a fraction of the cost, compared to previous part-learning methods such as Singh et al. [28]. We also show that a well constructed bag of words or Fisher vector model can substantially outperform the previous state-ofthe-art classification performance on this data.
The problem of recognizing text in images taken in the wild has gained significant attention from the computer vision community in recent years. Contrary to recognition of printed documents, recognizing scene text is a challenging problem. We focus on the problem of recognizing text extracted from natural scene images and the web. Significant attempts have been made to address this problem in the recent past. However, many of these works benefit from the availability of strong context, which naturally limits their applicability. In this work we present a framework that uses a higher order prior computed from an English dictionary to recognize a word, which may or may not be a part of the dictionary. We show experimental results on publicly available datasets. Furthermore, we introduce a large challenging word dataset with five thousand words to evaluate various steps of our method exhaustively.The main contributions of this work are: (1) We present a framework, which incorporates higher order statistical language models to recognize words in an unconstrained manner (i.e. we overcome the need for restricted word lists, and instead use an English dictionary to compute the priors). (2) We achieve significant improvement (more than 20%) in word recognition accuracies without using a restricted word list. (3) We introduce a large word recognition dataset (atleast 5 times larger than other public datasets) with character level annotation and benchmark it.
Scene text recognition has gained significant attention from the computer vision community in recent years. Recognizing such text is a challenging problem, even more so than the recognition of scanned documents. In this work, we focus on the problem of recognizing text extracted from street images. We present a framework that exploits both bottom-up and top-down cues. The bottom-up cues are derived from individual character detections from the image. We build a Conditional Random Field model on these detections to jointly model the strength of the detections and the interactions between them. We impose top-down cues obtained from a lexicon-based prior, i.e. language statistics, on the model. The optimal word represented by the text image is obtained by minimizing the energy function corresponding to the random field model.We show significant improvements in accuracies on two challenging public datasets, namely Street View Text (over 15%) and ICDAR 2003 (nearly 10%).
Abstract. Automatic image annotation aims at predicting a set of textual labels for an image that describe its semantics. These are usually taken from an annotation vocabulary of few hundred labels. Because of the large vocabulary, there is a high variance in the number of images corresponding to different labels ("class-imbalance"). Additionally, due to the limitations of manual annotation, a significant number of available images are not annotated with all the relevant labels ("weaklabelling"). These two issues badly affect the performance of most of the existing image annotation models. In this work, we propose 2PKNN, a two-step variant of the classical K-nearest neighbour algorithm, that addresses these two issues in the image annotation task. The first step of 2PKNN uses "image-to-label" similarities, while the second step uses "image-to-image" similarities; thus combining the benefits of both. Since the performance of nearest-neighbour based methods greatly depends on how features are compared, we also propose a metric learning framework over 2PKNN that learns weights for multiple features as well as distances together. This is done in a large margin set-up by generalizing a well-known (single-label) classification metric learning algorithm for multi-label prediction. For scalability, we implement it by alternating between stochastic sub-gradient descent and projection steps. Extensive experiments demonstrate that, though conceptually simple, 2PKNN alone performs comparable to the current state-of-the-art on three challenging image annotation datasets, and shows significant improvements after metric learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.