Spontaneous interpersonal synchronization of rhythmic behavior such as gait or hand clapping is a ubiquitous phenomenon in human interactions, and is potentially important for social relationships and action understanding. Although several authors have suggested a role of the mirror neuron system in interpersonal coupling, the underlying brain mechanisms are not well understood. Here we argue that more general theories of neural computations, namely predictive coding and the Free Energy Principle, could explain interpersonal coordination dynamics. Each brain minimizes coding costs by reducing the mismatch between the representations of observed and own motor behavior. Continuous mutual prediction and alignment result in an overall minimization of free energy, thus forming a stable attractor state.
Folder navigation is the main way that personal computer users retrieve their own files. People dedicate considerable time to creating systematic structures to facilitate such retrieval. Despite the prevalence of both manual organization and navigation, there is very little systematic data about how people actually carry out navigation, or about the relation between organization structure and retrieval parameters.The aims of our research were therefore to study users' folder structure, personal file navigation, and the relations between them. We asked 296 participants to retrieve 1,131 of their active files and analyzed each of the 5,035 navigation steps in these retrievals. Folder structures were found to be shallow (files were retrieved from mean depth of 2.86 folders), with small folders (a mean of 11.82 files per folder) containing many subfolders (M = 10.64). Navigation was largely successful and efficient with participants successfully accessing 94% of their files and taking 14.76 seconds to do this on average. Retrieval time and success depended on folder size and depth. We therefore found the users' decision to avoid both deep structure and large folders to be adaptive. Finally, we used a predictive model to
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.