Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are n-3 polyunsaturated fatty acids (PUFAs) consumed in low abundance in the Western diet. Increased consumption of n-3 PUFAs may have beneficial effects for a wide range of physiological outcomes including chronic inflammation. However, considerable mechanistic gaps in knowledge exist about EPA versus DHA, which are often studied as a mixture. We suggest the novel hypothesis that EPA and DHA may compete against each other through overlapping mechanisms. First, EPA and DHA may compete for residency in membrane phospholipids and thereby differentially displace n-6 PUFAs, which are highly prevalent in the Western diet. This would influence biosynthesis of downstream metabolites of inflammation initiation and resolution. Second, EPA and DHA exert different effects on plasma membrane biophysical structure, creating an additional layer of competition between the fatty acids in controlling signaling. Third, DHA regulates membrane EPA levels by lowering its rate of conversion to EPA’s elongation product n-3 docosapentaenoic acid. Collectively, we propose the critical need to investigate molecular competition between EPA and DHA in health and disease, which would ultimately impact dietary recommendations and precision nutrition trials.
Obesity is a major independent risk factor for increased morbidity and mortality upon infection with Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2), which is responsible for the current coronavirus disease pandemic (COVID-19). Therefore, there is a critical need to identify underlying metabolic factors associated with obesity that could be contributing toward increased susceptibility to SARS-CoV-2 in this vulnerable population. Here, we focus on the critical role of potent endogenous lipid metabolites known as specialized pro-resolving mediators (SPMs) that are synthesized from polyunsaturated fatty acids. SPMs are generated during the transition of inflammation to resolution and have a vital role in directing damaged tissues to homeostasis; furthermore, SPMs display anti-viral activity in the context of influenza infection without being immunosuppressive. We cover evidence from rodent and human studies to show that obesity, and its co-morbidities, induce a signature of SPM deficiency across immunometabolic tissues. We further discuss how the effects of obesity upon SARS-CoV-2 infection are likely exacerbated with environmental exposures that promote chronic pulmonary inflammation and augment SPM deficits. Finally, we highlight potential approaches to overcome the loss of SPMs using dietary and pharmacological interventions. Collectively, this mini-review underscores the need for mechanistic studies on how SPM deficiencies driven by obesity and environmental exposures may exacerbate the response to SARS-CoV-2.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
The insulin/glucose-sensitizing properties of specialized pro-resolving mediators (SPMs) are emerging. We investigated the role of resolvin E1 (RvE1) and its parent molecule eicosapentaenoic acid (EPA) on insulin/glucose homeostasis. We first identified a decrease in the RvE1 precursor 18-hydroxyeicosapentaenoic acid in obese male C57BL/6J mice. Therefore, we investigated the effects of intraperitoneal administration of exogenous RvE1 on obese inbred and outbred male mice. RvE1 administered to obese C57BL/6J mice for just four days improved hyperglycemia and hyperinsulinemia, which was partially dependent on the receptor ERV1/ChemR23. In contrast, RvE1's effects on fasting insulin/glucose were divergent in diversity outbred mice modeling human genetic variation. Next, we studied the preventative effects of pure dietary EPA ethyl esters on obese C57BL/6J mice. EPA ameliorated obesity-induced glucose intolerance, hyperinsulinemia, and hyperglycemia and this was independent from remodeling of the gut microbiome. Supporting analyses of NHANES data revealed that glucose levels were inversely related with EPA intake in obese adults in a sex-specific manner. Finally, secondary SNP analyses revealed extensive genetic variation of human EPA-and RvE1metabolizing genes. Collectively, the data underscore the importance of the resolvin E1-EPA axis in controlling insulin/glucose homeostasis and point to a therapeutic role for RvE1 that depends on the host genome.
Ozone (O3) is a criteria air pollutant known to increase the morbidity and mortality of cardiopulmonary diseases. This occurs through a pulmonary inflammatory response characterized by increased recruitment of immune cells into the airspace, pro-inflammatory cytokines, and pro-inflammatory lipid mediators. Recent evidence has demonstrated sex-dependent differences in the O3-induced pulmonary inflammatory response. However, it is unknown if this dimorphic response is evident in pulmonary lipid mediator metabolism. We hypothesized that there are sex-dependent differences in lipid mediator production following acute O3 exposure. Male and female C57BL/6J mice were exposed to 1 part per million O3 for 3 hours and were necropsied at 6 or 24 hours following exposure. Lung lavage was collected for cell differential and total protein analysis, and lung tissue was collected for mRNA analysis, metabololipidomics, and immunohistochemistry. Compared to males, O3-exposed female mice had increases in airspace neutrophilia, neutrophil chemokine mRNA, pro-inflammatory eicosanoids such as prostaglandin E2, and specialized pro-resolving mediators (SPMs) such as resolvin D5 in lung tissue. Likewise, precursor fatty acids (arachidonic and docosahexaenoic acid; DHA) were increased in female lung tissue following O3 exposure compared to males. Experiments with ovariectomized females revealed that loss of ovarian hormones exacerbates pulmonary inflammation and injury. However, eicosanoid and SPM production were not altered by ovariectomy despite depleted pulmonary DHA concentrations. Taken together, these data indicate that O3 drives an increased pulmonary inflammatory and bioactive lipid mediator response in females. Furthermore, ovariectomy increases susceptibility to O3-induced pulmonary inflammation and injury, as well as decreases pulmonary DHA concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.