Obesity is associated with increased risk for infections and poor responses to vaccinations, which may be due to compromised B-cell function. However, there is limited information about the influence of obesity on B-cell function and underlying factors that modulate B-cell responses. Therefore, we studied B-cell cytokine secretion and/or antibody production across obesity models. In obese humans, B-cell IL-6 secretion was lowered and IgM levels were elevated upon ex vivo anti-BCR/TLR9 stimulation. In murine obesity induced by a high fat diet, ex vivo IgM and IgG were elevated with unstimulated B-cells. Furthermore, the high fat diet lowered bone marrow B-cell frequency accompanied by diminished transcripts of early lymphoid commitment markers. Murine B-cell responses were subsequently investigated upon influenza A/Puerto Rico/8/34 infection using a Western diet model in the absence or presence of docosahexaenoic acid (DHA3). DHA, an essential fatty acid with immunomodulatory properties, was tested since its plasma levels are lowered in obesity. Relative to controls, mice consuming the Western diet had diminished antibody titers whereas the Western diet + DHA improved titers. Mechanistically, DHA did not directly target B-cells to elevate antibody levels. Instead, DHA increased the concentration of the downstream specialized pro-resolving lipid mediators (SPMs) 14-HDHA, 17-HDHA, and protectin DX. All three SPMs were found to be effective in elevating murine antibody levels upon influenza infection. Altogether, the results demonstrate that B-cell responses are impaired across human and mouse obesity models and show that essential fatty acid status is a factor influencing humoral immunity, potentially through an SPM-mediated mechanism.
Dyslipidemia, the condition of elevated serum triglycerides, elevated low-density lipoprotein cholesterol, and/or low high-density lipoprotein cholesterol, is a public health problem of growing concern. Dyslipidemia clusters with other disorders of the metabolic syndrome that together influence, and may derive from, chronic inflammation. While best recognized as a risk factor for atherosclerotic cardiovascular disease, lipid dysregulation has recently been shown to influence a variety of disease processes in several organ systems. This review highlights our current understanding of the role of cholesterol and its homeostatic trafficking in pulmonary physiology and pathophysiology. Gene-targeted mice deficient in regulatory proteins that govern reverse cholesterol transport (e.g., ATP Binding Cassette transporter G1, apolipoprotein E) have recently been shown to have abnormal lung physiology, including dysregulated pulmonary innate and adaptive immune responses to the environment. It has also recently been shown that diet-induced dyslipidemia alters trafficking of immune cells to the lung in a manner that may have important implications for the pathogenesis of acute lung injury, asthma, pneumonia, and other lung disorders. Conversely, cholesterol-targeting pharmacologic agents, such as statins, apolipoprotein mimetic peptides, and Liver X Receptor agonists, have shown early promise in the treatment of several lung disorders. An improved understanding of the precise molecular mechanisms by which cholesterol and its trafficking modify pulmonary immunity will be required before the full implications of dyslipidemia as a lung disease modifier, and the full potential of lipid-targeting agents as pulmonary therapeutics, can be realized.
Advancements in methods, technology, and our understanding of the pathobiology of lung injury have created the need to update the definition of experimental acute lung injury (ALI). We queried 50 participants with expertise in ALI and acute respiratory distress syndrome using a Delphi method composed of a series of electronic surveys and a virtual workshop. We propose that ALI presents as a “multidimensional entity” characterized by four “domains” that reflect the key pathophysiologic features and underlying biology of human acute respiratory distress syndrome. These domains are 1 ) histological evidence of tissue injury, 2 ) alteration of the alveolar–capillary barrier, 3 ) presence of an inflammatory response, and 4 ) physiologic dysfunction. For each domain, we present “relevant measurements,” defined as those proposed by at least 30% of respondents. We propose that experimental ALI encompasses a continuum of models ranging from those focusing on gaining specific mechanistic insights to those primarily concerned with preclinical testing of novel therapeutics or interventions. We suggest that mechanistic studies may justifiably focus on a single domain of lung injury, but models must document alterations of at least three of the four domains to qualify as “experimental ALI.” Finally, we propose that a time criterion defining “acute” in ALI remains relevant, but the actual time may vary based on the specific model and the aspect of injury being modeled. The continuum concept of ALI increases the flexibility and applicability of the definition to multiple models while increasing the likelihood of translating preclinical findings to critically ill patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.