This review aims to increase awareness of the potential for developing plant protection strategies based on natural products. Selected examples of commercial successes are given and recent data from our own laboratory using allicin from garlic are presented. The volatile antimicrobial substance allicin (diallylthiosulphinate) is produced in garlic when the tissues are damaged and the substrate alliin (S-allyl-L-cysteine sulphoxide) mixes with the enzyme alliin-lyase (E.C.4.4.1.4). Allicin is readily membrane-permeable and undergoes thiol-disulphide exchange reactions with free thiol groups in proteins. It is thought that these properties are the basis of its antimicrobial action. We tested the effectiveness of garlic juice against a range of plant pathogenic bacteria, fungi and oomycetes in vitro. Allicin effectively controlled seed-borne Alternaria spp. in carrot, Phytophthora leaf blight of tomato and tuber blight of potato as well as Magnaporthe on rice and downy mildew of Arabidopsis. In Arabidopsis the reduction in disease was apparently due to a direct action against the pathogen since no accumulation of salicylic acid (a marker for systemic acquired resistance, SAR) was observed after treatment with garlic extract. We see a potential for developing preparations from garlic for use in organic farming, e.g. for reducing the pathogen inoculum potential in planting material such as seeds and tubers. We have tested various encapsulation formulations in comparison to direct treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.