Purpose The paper aims to present the novel design approach for a low power LC-voltage-controlled oscillators (VCO) design with low phase noise that too targeted at the most sought band of Bluetooth applications. Owing to their crucial role in a wide variety of modern applications, VCO and phase-locked loop (PLL) frequency synthesizers have been the subject of extensive research in recent years. In fact, VCO is one of the key components being used in a modern PLL to provide local frequency signal since a few decades. The complicated synthesizer requirements imposed by cellular phone applications have been a key driver for PLL research. Design/methodology/approach This paper first opted to present the recent developments on implemented techniques of LC-VCO designs in popular RF bands. An LC-VCO with a differential (cross-coupled) MOS structure is then presented which has aimed to compensate the losses of an on-chip inductor implemented in UMC’s 130 nm RF-CMOS process. The LC-VCO is finally targeted to embed onto the synthesizer chip, to address the narrowband (S-Band) applications where Bluetooth has been the most sought one. The stacked inductor topology has been adopted to get the benefit of its on-chip compatibility and low noise. The active differential architecture, which basically is a cross-coupled NMOS structure, has been then envisaged for the gain which counters the losses completely. Three major areas of LC-VCO design are considered and worked upon for the optimum design parameters, which includes Bluetooth coverage range of 2.410 GHz to 2.490 GHz, better linearity and high sensitivity and finally the most sought phase noise performance for an LC-VCO. Findings The work provides the complete design aspect of a novel LC-VCO design for low phase noise narrowband applications such as Bluetooth. Using tuned MOS varactor, in 130 nm-RF CMOS process, a high gain sensitivity of 194 MHz/Volt was obtained. Thus, the entire frequency range of 2415-2500 MHz for Bluetooth applications, supporting multiple standards from 3G to 5G, was covered by voltage tuning of 0.7-1.0 V. To achieve the low power dissipation, low bias (1.2 V) cross-coupled differential structure was adopted, which completely paid for the losses occurred in the LC resonator. The power dissipation comes out to be 8.56 mW which is a remarkably small value for such a high gain and low noise VCO. For the VCO frequencies in the presented LO-plan, the tank inductor was allowed to have a moderate value of inductance (8 nH), while maintaining a very high Q factor. The LC-VCO of the proposed LO-generator achieved extremely low phase noise of −140 dBc/Hz @ 1 MHz, as compared to the contemporary designs. Research limitations/implications Though a professional tool for inductor and circuit design (ADS-by Keysight Technologies) has been chosen, actual inductor and circuit implementation on silicon may still lead to various parasitic evolutions; therefore, one must have that margin pre-considered while finalizing the design and testing it. Practical implications The proposed LC-VCO architecture presented in this work shows low phase noise and wide tuning range with high gain sensitivity in S-Band, low power dissipation and narrowband nature of wireless applications. Originality/value The on-chip stacked inductor has uniquely been designed with the provided dimensions and other parameters. Though active design is in a conventional manner, its sizing and bias current selection are unique. The pool of results obtained completely preserves the originally to the full extent.
This paper deals with the breakdown voltage studies on a new lateral diffusion p‐channel MOSFET(LDMOS) and development of an optimal structure based on the breakdown voltage and on‐state resistance. In this new structure, the channel region (n‐body) and the lightly doped drain (LDD) structure were formed by a self‐aligned process. This approach leads to the saving of one mask level during fabrication. Two‐dimensional simulation was carried out on various parameters such as the horizontal and vertical electric field intensities, the impact generation profiles, generation recombination, impact generation before and after breakdown, the carrier concentration, electron and hole current densities and the conduction current densities of the structure to ascertain the behaviour of breakdown voltage and the on‐state resistance. Breakdown voltages closer to −162 V have been obtained in these structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.