Recent research has shown that when constrained to causality, the optimal feedback controller for an ocean wave energy converter (WEC) subjected to stochastic waves can be solved as a nonstandard Linear Quadratic-Gaussian (LQG) optimal control problem. In this paper, we present a relaxation to the modeling assumptions that must be made to apply this theory. Specifically, we propose a technique that uses the principle of Gaussian Closure to accommodate nonlinear WEC dynamics in the synthesis of the optimal feedback law. The technique is approximate, in the sense that it arrives at a computationally efficient control synthesis technique through a Gaussian approximation of the stationary stochastic response of the system. This approach allows for a wide range of nonlinear dynamical models to be considered, and also accommodates many complex loss mechanisms in the power transmission system. The technique is demonstrated through simulation examples pertaining to a flap-type WEC with a hydraulic power train.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.